scholarly journals Satellite observations of upper-ocean currents in Terra Nova Bay, Antarctica

2001 ◽  
Vol 33 ◽  
pp. 407-412 ◽  
Author(s):  
Michael L. van Woert ◽  
Walter N. Meier ◽  
Cheng-Zhi Zou ◽  
Andy Archer ◽  
Andrea Pellegrini ◽  
...  

AbstractShip and iceberg drifts, along with data from modern satellite-tracked drifting buoys, portray generally northward flow in the southwest Ross Sea. Less is known, however, about the ocean variability in this region. Here we use Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) imagery to describe a cyclonically rotating gyre in Terra Nova Bay, Antarctica (75° S, 165° E). The image sequence is taken from an exceptionally clear, calm period during winter 1998. Surface currents, derived from tracking drifting ice with a maximum cross-correlation algorithm, were found to be ∼ 20 to 30 cm s−1 Based on scaling arguments, the observed currents appear to be best explained as an oceanic response to a rapidly changing, offshore, katabatic windjet.

2010 ◽  
Vol 22 (3) ◽  
pp. 319-329 ◽  
Author(s):  
Andrea Cappelletti ◽  
Paola Picco ◽  
Tiziana Peluso

AbstractA one-year time series of Acoustic Doppler Current Profiler (ADCP) data was collected in Terra Nova Bay (TNB) polynya (Ross Sea, Antarctica) during 2000. Together with Automatic Weather Station (AWS) Eneide meteorological data and Special Sensor Microwave Imager (SSM/I) ice concentration data, ADCP data were analysed to investigate upper layer dynamics and variability due to atmospheric forcing. Empirical Orthogonal Function (EOF) analysis was performed to separate the surface variability caused by local forcing from the large-scale circulation component. In particular, the first mode represented the barotropic circulation while the second the stronger surface currents. The decrease in shelf water density from melting sea ice resulted in an off-shore density gradient producing a southern shift in the circulation. This result proved to be consistent with the in situ data acquired during February–April at 120 m depth. The observed variability of the surface currents was assessed with respect to the thermal wind equation and the steady Ekman model. Strong katabatic winds shifted the surface currents eastward with respect to the general north-eastern circulation. The wind stress acted as a relevant forcing for the surface large-scale circulation in TNB, but had negligible effects on the vertically integrated transport.


2021 ◽  
pp. 103510
Author(s):  
Alessandro Cau ◽  
Claudia Ennas ◽  
Davide Moccia ◽  
Olga Mangoni ◽  
Francesco Bolinesi ◽  
...  

2011 ◽  
Vol 52 (57) ◽  
pp. 291-300 ◽  
Author(s):  
Stefan Kern ◽  
Stefano Aliani

AbstractWintertime (April–September) area estimates of the Terra Nova Bay polynya (TNBP), Antarctica, based on satellite microwave radiometry are compared with in situ observations of water salinity, temperature and currents at a mooring in Terra Nova Bay in 1996 and 1997. In 1996, polynya area anomalies and associated anomalies in polynya ice production are significantly correlated with salinity anomalies at the mooring. Salinity anomalies lag area and/or ice production anomalies by about 3 days. Up to 50% of the variability in the salinity at the mooring position can be explained by area and/or ice production anomalies in the TNBP for April–September 1996. This value increases to about 70% when considering shorter periods like April–June or May–July, but reduces to 30% later, for example July–September, together with a slight increase in time lag. In 1997, correlations are smaller, less significant and occur at a different time lag. Analysis of ocean currents at the mooring suggests that in 1996 conditions were more favourable than in 1997 for observing the impact of descending plumes of salt-enriched water formed in the polynya during ice formation on the water masses at the mooring depth.


2004 ◽  
Vol 23 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Maria De Domenico ◽  
Angelina Lo Giudice ◽  
Luigi Michaud ◽  
Marcello Saitta ◽  
Vivia Bruni

PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0153254 ◽  
Author(s):  
Roksana Majewska ◽  
Peter Convey ◽  
Mario De Stefano

1999 ◽  
Vol 11 (2) ◽  
pp. 261-264 ◽  
Author(s):  
Filippo Mangani ◽  
Michela Maione ◽  
Luciano Lattanzi

CCl3F (or CFC-11) and CCl2F2 (or CFC-12) were determined in air samples collected, during subsequent summer Antarctic campaigns, in different sampling sites in the Ross Sea Region. The samples were analysed by GC-ECD after enrichment. Data obtained since 1988–89 were plotted to observe the trend of CFCs atmospheric concentration levels. A decrease in the rate of increase of CFC-12 concentration was observed, whilst the concentration of CFC-11 was actually seen to be decreasing.


Polar Biology ◽  
2013 ◽  
Vol 36 (5) ◽  
pp. 731-753 ◽  
Author(s):  
Álvaro L. Peña Cantero ◽  
Ferdinando Boero ◽  
Stefano Piraino

Author(s):  
P. Povero ◽  
M. Chiantore ◽  
C. Misic ◽  
G. Budillon ◽  
R. Cattaneo-Vietti

Sign in / Sign up

Export Citation Format

Share Document