scholarly journals Climatic conditions, mass balance and dynamics of Larsen B ice shelf, Antarctic Peninsula, prior to collapse

2004 ◽  
Vol 39 ◽  
pp. 557-562 ◽  
Author(s):  
Pedro Skvarca ◽  
Hernán De Angelis ◽  
Andrés F. Zakrajsek

AbstractFollowing the collapse of Larsen A in 1995, about 3200 km2 of Larsen B ice shelf disintegrated in early 2002 during the warmest summer recorded on the northeastern Antarctic Peninsula. Immediately prior to disintegration the last field campaign was carried out on Larsen B. Measurements included surface net mass balance, velocity and strain rate on a longitudinal transect along Crane Glacier flowline and over a remnant section confined within Seal Nunataks that survived the collapse. In addition, an automatic weather station located nearby allowed derivation of melt days relevant to the formation and extent of surface meltwater. Repeated surveys allowed us to detect a significant acceleration in ice-flow velocity and associated increasing strain rates along the longitudinal transect. It may be possible to use this acceleration as a predictor of imminent ice-shelf collapse, applicable to ice shelves subject to similar climatic conditions. Additional information on recent ongoing changes was provided by a visible satellite image acquired in early 2003.

2010 ◽  
Vol 51 (55) ◽  
pp. 97-102 ◽  
Author(s):  
J. Wendt ◽  
A. Rivera ◽  
A. Wendt ◽  
F. Bown ◽  
R. Zamora ◽  
...  

AbstractRegional climate warming has caused several ice shelves on the Antarctic Peninsula to retreat and ultimately collapse during recent decades. Glaciers flowing into these retreating ice shelves have responded with accelerating ice flow and thinning. The Wordie Ice Shelf on the west coast of the Antarctic Peninsula was reported to have undergone a major areal reduction before 1989. Since then, this ice shelf has continued to retreat and now very little floating ice remains. Little information is currently available regarding the dynamic response of the glaciers feeding the Wordie Ice Shelf, but we describe a Chilean International Polar Year project, initiated in 2007, targeted at studying the glacier dynamics in this area and their relationship to local meteorological conditions. Various data were collected during field campaigns to Fleming Glacier in the austral summers of 2007/08 and 2008/09. In situ measurements of ice-flow velocity first made in 1974 were repeated and these confirm satellite-based assessments that velocity on the glacier has increased by 40–50% since 1974. Airborne lidar data collected in December 2008 can be compared with similar data collected in 2004 in collaboration with NASA and the Chilean Navy. This comparison indicates continued thinning of the glacier, with increasing rates of thinning downstream, with a mean of 4.1 ± 0.2 m a−1 at the grounding line of the glacier. These comparisons give little indication that the glacier is achieving a new equilibrium.


1993 ◽  
Vol 17 ◽  
pp. 211-218 ◽  
Author(s):  
D.G. Vaughan ◽  
D.R. Mantripp ◽  
J. Sievers ◽  
C.S.M. Doake

Wilkins Ice Shelf has an area of 16000 km2 and lies off the west coast of the Antarctic Peninsula bounded by Alexander, Latady, Charcot and Rothschild islands. Several ice shelves, including Wilkins, exist close to a climatic limit of viability. The recent disintegration of the neighbouring Wordie Ice Shelf has been linked to atmopsheric warming observed on the Antarctic Peninsula. The limit of ice-shelf viability thus appears to have migrated south. Should this continue, the question arises; how long will Wilkins Ice Shelf survive?Compared with the other ice shelves on the Antarctic Peninsula, few surface glaciological data have been collected on Wilkins Ice Shelf. We compare, contrast and combine a variety of remotely sensed data: the recently declassified GEOSAT Geodetic Mission altimetry, Landsat MSS and TM imagery, and radio-echo sounding data (RES), to study its structure and mass balance regime.We find that this shelf has an unusual mass balance regime and relies heavily for sustenance on in situ accumulation. Its response to a continued atmospheric warming may be significantly different from that of Wordie Ice Shelf. Wordie Ice Shelf was fed by several dynamic outlet glaciers which accelerated the disintegration process when the ice shelf fractured. Wilkins Ice Shelf by contrast is almost stagnant and is expected to respond by normal calving at the ice front. Changes in the accumulation rate or basal melt-rate may, however, dominate any dynamic effect. Over the last two decades the ice front positions have remained stable.


1988 ◽  
Vol 11 ◽  
pp. 89-94 ◽  
Author(s):  
D. Möller ◽  
B. Ritter

The glacial geodetic contribution to the mass balance and dynamics of ice shelves includes repeated determinations of the absolute position (ϕ,λ,Η) of selected points (using satellite methods), the establishment of relative positions (y,x,Δh) in deformation figures, and height measurements. The results are used to establish ice-flow velocities and directions, strain and rotation rates, and changes in height. Modelling of deformation parameters at a few points over a large ice shelf is made possible by the collocation method. Results of these observations and analysis of Ekström Ice Shelf for the period 1979–87 are reported.


2021 ◽  
Author(s):  
Rainey Aberle

The widespread retreat of glaciers and the collapse of ice shelves along the Antarctic Peninsula has been attributed to atmospheric and oceanic warming, which promotes mass loss. However, several glaciers on the eastern peninsula that were buttressed by the Larsen A and B ice shelves prior to collapse in 1995 and 2002, respectively, have been advancing in recent years. This asymmetric pattern of rapid retreat and long-term re-advance is similar to the tidewater glacier cycle, which can occur largely independent of climate forcing. Here, I use a width- and depth-integrated numerical ice flow model to investigate glacier response to ice shelf collapse and the influence of changing climate conditions at Crane Glacier, formerly a tributary of the Larsen B ice shelf, over the last ~10 years. Sensitivity tests to explore the influence of perturbations in surface mass balance and submarine melt (up to 10 m a-1) and fresh water impounded in crevasses (up to 10 m) on glacier dynamics reveal that by 2100, the modeled mass discharge ranges from 0.53-98 Gt a-1, with the most substantial changes due to surface melt-induced thinning. My findings suggest that the growth of a floating ice tongue can hinder enhanced flow, allowing the grounding zone to remain steady for many decades, analogous to the advancing stage of the tidewater glacier cycle. Additionally, former tributary glaciers can take several decades to geometrically adjust to ice shelf collapse at their terminal boundary while elevated glacier discharge persists.


1993 ◽  
Vol 17 ◽  
pp. 211-218 ◽  
Author(s):  
D.G. Vaughan ◽  
D.R. Mantripp ◽  
J. Sievers ◽  
C.S.M. Doake

Wilkins Ice Shelf has an area of 16000 km2 and lies off the west coast of the Antarctic Peninsula bounded by Alexander, Latady, Charcot and Rothschild islands. Several ice shelves, including Wilkins, exist close to a climatic limit of viability. The recent disintegration of the neighbouring Wordie Ice Shelf has been linked to atmopsheric warming observed on the Antarctic Peninsula. The limit of ice-shelf viability thus appears to have migrated south. Should this continue, the question arises; how long will Wilkins Ice Shelf survive? Compared with the other ice shelves on the Antarctic Peninsula, few surface glaciological data have been collected on Wilkins Ice Shelf. We compare, contrast and combine a variety of remotely sensed data: the recently declassified GEOSAT Geodetic Mission altimetry, Landsat MSS and TM imagery, and radio-echo sounding data (RES), to study its structure and mass balance regime. We find that this shelf has an unusual mass balance regime and relies heavily for sustenance on in situ accumulation. Its response to a continued atmospheric warming may be significantly different from that of Wordie Ice Shelf. Wordie Ice Shelf was fed by several dynamic outlet glaciers which accelerated the disintegration process when the ice shelf fractured. Wilkins Ice Shelf by contrast is almost stagnant and is expected to respond by normal calving at the ice front. Changes in the accumulation rate or basal melt-rate may, however, dominate any dynamic effect. Over the last two decades the ice front positions have remained stable.


1988 ◽  
Vol 11 ◽  
pp. 161-164 ◽  
Author(s):  
M. H. Talbot

A collation of available data shows that sea-water with a temperature 3°C above the in-situ freezing point lies beneath George VI Ice Shelf in the Antarctic Peninsula, and is widespread on the Amundsen-Bellingshausen continental shelf. The presence of warm water is a factor in the recent and continuing disintegration of ice shelves in the region, yet the meteorology and oceanography of the sector are little known. We discuss a plausible link between the present climatic conditions, sea-water characteristics and the warm-water intrusion on to the continental shelf, thereby illustrating an indirect climatic influence on the mass balance of ice shelves.


2010 ◽  
Vol 56 (198) ◽  
pp. 593-600 ◽  
Author(s):  
D. Jansen ◽  
B. Kulessa ◽  
P.R. Sammonds ◽  
A. Luckman ◽  
E.C. King ◽  
...  

AbstractWe modelled the flow of the Larsen C and northernmost Larsen D ice shelves, Antarctic Peninsula, using a model of continuum mechanics of ice flow, and applied a fracture criterion to the simulated velocities to investigate the ice shelf’s present-day stability. Constraints come from satellite data and geophysical measurements from the 2008/09 austral summer. Ice-shelf thickness was derived from BEDMAP and ICESat data, and the density–depth relationship was inferred from our in situ seismic reflection data. We obtained excellent agreements between modelled and measured ice-flow velocities, and inferred and observed distributions of rifts and crevasses. Residual discrepancies between regions of predicted fracture and observed crevasses are concentrated in zones where we assume a significant amount of marine ice and therefore altered mechanical properties in the ice column. This emphasizes the importance of these zones and shows that more data are needed to understand their influence on ice-shelf stability. Modelled flow velocities and the corresponding stress distribution indicate that the Larsen C ice shelf is stable at the moment. However, weakening of the elongated marine ice zones could lead to acceleration of the ice shelf due to decoupling from the slower parts in the northern inlets and south of Kenyon Peninsula, leading to a velocity distribution similar to that in the Larsen B ice shelf prior to its disintegration.


1988 ◽  
Vol 11 ◽  
pp. 89-94 ◽  
Author(s):  
D. Möller ◽  
B. Ritter

The glacial geodetic contribution to the mass balance and dynamics of ice shelves includes repeated determinations of the absolute position (ϕ,λ,Η) of selected points (using satellite methods), the establishment of relative positions (y,x,Δh) in deformation figures, and height measurements. The results are used to establish ice-flow velocities and directions, strain and rotation rates, and changes in height. Modelling of deformation parameters at a few points over a large ice shelf is made possible by the collocation method. Results of these observations and analysis of Ekström Ice Shelf for the period 1979–87 are reported.


1988 ◽  
Vol 11 ◽  
pp. 161-164 ◽  
Author(s):  
M. H. Talbot

A collation of available data shows that sea-water with a temperature 3°C above the in-situ freezing point lies beneath George VI Ice Shelf in the Antarctic Peninsula, and is widespread on the Amundsen-Bellingshausen continental shelf. The presence of warm water is a factor in the recent and continuing disintegration of ice shelves in the region, yet the meteorology and oceanography of the sector are little known. We discuss a plausible link between the present climatic conditions, sea-water characteristics and the warm-water intrusion on to the continental shelf, thereby illustrating an indirect climatic influence on the mass balance of ice shelves.


1998 ◽  
Vol 27 ◽  
pp. 86-92 ◽  
Author(s):  
Helmut Rott ◽  
Wolfgang Rack ◽  
Thomas Nagler ◽  
Pedro Skvarca

The areal changes of the northern Larsen Ite Shelf (LIS), Antarctic Peninsula, between March 1986 and March 1997 have been analyzed, based on synthetic aperture radar images of the European remote-sensing satellites ERS-1 and ERS-2 and on Landsat images. This analysis is complemented by data on ice motion and surface mass balance which have been obtained during several field campaigns since the early 1980s. After a period of retreat, coinciding with atmospheric warming and with decreasing net accumulation at the surface due to melt losses, the two northernmost sections of LIS disintegrated almost completely within a few days in January 1995. Recent observations of the ice-shelf section north of Jason Peninsula, which is presently the northernmost section of LIS, show increased summer melt and intensification of the rifting processes, probably causing accelerated retreat of this section in the near future. The retreat and the disintegration event of LIS indicate high sensitivity of ice shelves to prolonged perturbations of the mass balance.


Sign in / Sign up

Export Citation Format

Share Document