scholarly journals Radar-detected englacial stratigraphy in the Pensacola Mountains, Antarctica: implications for recent changes in ice flow and accumulation

2013 ◽  
Vol 54 (63) ◽  
pp. 91-100 ◽  
Author(s):  
Seth Campbell ◽  
Greg Balco ◽  
Claire Todd ◽  
Howard Conway ◽  
Kathleen Huybers ◽  
...  

AbstractWe used measurements of radar-detected stratigraphy, surface ice-flow velocities and accumulation rates to investigate relationships between local valley-glacier and regional ice-sheet dynamics in and around the Schmidt Hills, Pensacola Mountains, Antarctica. Ground-penetrating radar profiles were collected perpendicular to the long axis of the Schmidt Hills and the margin of Foundation Ice Stream (FIS). Within the valley confines, the glacier consists of blue ice, and profiles show internal stratigraphy dipping steeply toward the nunataks and truncated at the present-day ablation surface. Below the valley confines, the blue ice is overlain by firn. Data show that upward-progressing overlap of actively accumulating firn onto valley-glacier ice is slightly less than ice flow out of the valleys over the past ∼1200 years. The apparent slightly negative mass balance (-0.25 cm a-1) suggests that ice-margin elevations in the Schmidt Hills may have lowered over this time period, even without a change in the surface elevation of FIS. Results suggest that (1) mass-balance gradients between local valley glaciers and regional ice sheets should be considered when using local information to estimate regional ice surface elevation changes; and (2) interpretation of shallow ice structures imaged with radar can provide information about local ice elevation changes and stability.

Author(s):  
S. Luo ◽  
Y. Cheng ◽  
Z. Li ◽  
Y. Wang ◽  
K. Wang ◽  
...  

Abstract. Recent research indicates that the estimated elevation changes and associated mass balance in East Antarctica are of some degree of uncertainty; a light accumulation has occurred in its vast inland regions, while mass loss in Wilkes Land appears significant. It is necessary to study the mass change trend in the context of a long period of the East Antarctic Ice Sheet (EAIS). The input-output method based on surface ice flow velocity and ice thickness is one of the most important ways to estimate the mass balance, which can provide longer-term knowledge of mass balance because of the availability of the early satellites in 1960s. In this study, we briefly describe the method of extracting ice velocity based on the historical optical images from 1960s to 1980s. Based on the draft ice velocity map of the EAIS using this method, we conduct a series of validation experiments, including comparisons with in-situ measurement, existing historical maps and rock outcrop dataset. Finally, we use the input-output method to estimate mass balance in some regions of EAIS using the generated velocity map.


2020 ◽  
Author(s):  
Guillaume Jouvet ◽  
Stefan Röllin ◽  
Hans Sahli ◽  
José Corcho ◽  
Lars Gnägi ◽  
...  

Abstract. In the 1950s and '60s, specific radionuclides were released into the atmosphere as a result of nuclear weapons testing. This radioactive fallout left its signature on the accumulated layers of glaciers worldwide, thus providing a tracer for ice particles traveling within the gravitational ice flow and being released into the ablation zone. For surface ice dating purposes, we analyze here the activity of 239Pu, 240Pu and 236U radionuclides derived from more than 200 ice samples collected along five flowlines at the surface of Gauligletscher, Switzerland. It was found that contaminations appear band-wise along most of the sampled lines, revealing a V-shaped profile consistent with the ice flow field already observed. Similarities to activities found in ice cores permit the isochronal lines at the glacier from 1960 and 1963 to be identified. Hence this information is used to fine-tune an ice flow/mass balance model, and to accurately map the age of the entire glacier ice. Our results indicate the strong potential for combining radionuclide contamination and ice flow modeling in two different ways. First, such tracers provide unique information on the long-term ice motion of the entire glacier (and not only at its surface), and on the long-term mass balance, and therefore offer an extremely valuable data tool for calibrating ice flows within a model. Second, the dating of surface ice is highly relevant when conducting "horizontal ice core sampling", i.e., when taking chronological samples of surface ice from the distant past, without having to perform expensive and logistically complex deep ice-core drilling. In conclusion, our results show that an airplane which crash-landed on the Gauligletscher in 1946 will likely soon be released from the ice close to the place where pieces have emerged in recent years, thus permitting the prognosis given in an earlier model to be revised considerably.


2006 ◽  
Vol 52 (176) ◽  
pp. 17-30 ◽  
Author(s):  
Martin Horwath ◽  
Reinhard Dietrich ◽  
Michael Baessler ◽  
Uwe Nixdorf ◽  
Daniel Steinhage ◽  
...  

AbstractExtensive observations on Nivlisen, an ice shelf on Antarctica’s Atlantic coast, are analyzed and combined to obtain a new description of its complex glaciological regime. We generate models of ice thickness (primarily from ground-penetrating radar), ellipsoidal ice surface height (primarily from ERS-1 satellite altimetry), freeboard height (by utilizing precise sea surface information) and ice-flow velocity (from ERS-1/-2 SAR interferometry and GPS measurements). Accuracy assessments are included. Exploiting the hydrostatic equilibrium relation, we infer the ‘apparent air layer thickness’ as a useful measure for a glacier’s density deviation from a pure ice body. This parameter exhibits a distinct spatial variation (ranging from ≈2 to ≈16m) which we attribute to the transition from an ablation area to an accumulation area. We compute mass-flux and mass-balance parameters on a local and areally integrated scale. The combined effect of bottom mass balance and temporal change averaged over an essential part of Nivlisen is –654 ± 170 kg m–2 a–1, which suggests bottom melting processes dominate. We discuss our results in view of temporal ice-mass changes (including remarks on historical observations), basal processes, near-surface processes and ice-flow dynamical features. The question of temporal changes remains open from the data at hand, and we recommend further observations and analyses for its solution.


2020 ◽  
Vol 14 (11) ◽  
pp. 4233-4251
Author(s):  
Guillaume Jouvet ◽  
Stefan Röllin ◽  
Hans Sahli ◽  
José Corcho ◽  
Lars Gnägi ◽  
...  

Abstract. In the 1950s and 1960s, specific radionuclides were released into the atmosphere as a result of nuclear weapons testing. This radioactive fallout left its signature on the accumulated layers of glaciers worldwide, thus providing a tracer for ice particles traveling within the gravitational ice flow and being released into the ablation zone. For surface ice dating purposes, we analyze here the activity of 239Pu, 240Pu and 236U radionuclides derived from more than 200 ice samples collected along five flowlines at the surface of Gauligletscher, Switzerland. It was found that contaminations appear band-wise along most of the sampled lines, revealing a V-shaped profile consistent with the ice flow field already observed. Similarities to activities found in ice cores permit the isochronal lines at the glacier from 1960 and 1963 to be identified. Hence this information is used to fine-tune an ice flow/mass balance model, and to accurately map the age of the entire glacier ice. Our results indicate the strong potential for combining radionuclide contamination and ice flow modeling in two different ways. First, such tracers provide unique information on the long-term ice motion of the entire glacier (and not only at its surface), and on the long-term mass balance, and therefore offer an extremely valuable data tool for calibrating ice flows within a model. Second, the dating of surface ice is highly relevant when conducting “horizontal ice core sampling”, i.e., when taking chronological samples of surface ice from the distant past, without having to perform expensive and logistically complex deep ice-core drilling. In conclusion, our results show that an airplane which crash-landed on the Gauligletscher in 1946 will likely soon be released from the ice close to the place where pieces have emerged in recent years, thus permitting the prognosis given in an earlier model to be revised considerably.


2004 ◽  
Vol 39 ◽  
pp. 417-422 ◽  
Author(s):  
Anna Sinisalo ◽  
Aslak Grinsted ◽  
John Moore

AbstractGround-penetrating radar (GPR) surveys in Scharffenbergbotnen valley, Dronning Maud Land, Antarctica, complement earlier, relatively sparse data on the ice-flow dynamics and mass-balance distribution of the area. The negative net surface mass balance in the valley appears to be balanced by the inflow. The flow regime in Scharffenbergbotnen defines four separate mass-balance areas, and about 60 times more ice enters the valley from the northwestern entrance than via the narrow western gate. We formalize and compare three methods of determining both the surface age gradient of the blue ice and the dip angles of isochrones in the firn/blue-ice transition zone: observed and dated radar internal reflections, a geometrical model of isochrones, and output from a flowline model. The geometrical analysis provides generally applicable relationships between ice surface velocity and surface age gradient or isochrone dip angle.


2016 ◽  
Vol 62 (236) ◽  
pp. 1083-1092 ◽  
Author(s):  
SHUN TSUTAKI ◽  
SHIN SUGIYAMA ◽  
DAIKI SAKAKIBARA ◽  
TAKANOBU SAWAGAKI

ABSTRACTTo quantify recent thinning of marine-terminating outlet glaciers in northwestern Greenland, we carried out field and satellite observations near the terminus of Bowdoin Glacier. These data were used to compute the change in surface elevation from 2007 to 2013 and this rate of thinning was then compared with that of the adjacent land-terminating Tugto Glacier. Comparing DEMs of 2007 and 2010 shows that Bowdoin Glacier is thinning more rapidly (4.1 ± 0.3 m a−1) than Tugto Glacier (2.8 ± 0.3 m a−1). The observed negative surface mass-balance accounts for <40% of the elevation change of Bowdoin Glacier, meaning that the thinning of Bowdoin Glacier cannot be attributable to surface melting alone. The ice speed of Bowdoin Glacier increases down-glacier, reaching 457 m a−1 near the calving front. This flow regime causes longitudinal stretching and vertical compression at a rate of −0.04 a−1. It is likely that this dynamically-controlled thinning has been enhanced by the acceleration of the glacier since 2000. Our measurements indicate that ice dynamics indeed play a predominant role in the rapid thinning of Bowdoin Glacier.


2014 ◽  
Vol 7 (1) ◽  
pp. 129-148 ◽  
Author(s):  
K. Lindbäck ◽  
R. Pettersson ◽  
S. H. Doyle ◽  
C. Helanow ◽  
P. Jansson ◽  
...  

Abstract. We present ice thickness and bed topography maps with high spatial resolution (250 to 500 m) of a and-terminating section of the Greenland Ice Sheet derived from combined ground-based and airborne radar surveys. The data have a total area of ~12000 km2 and cover the whole ablation area of the outlet glaciers of Isunnguata Sermia, Russell, Leverett, Ørkendalen and Isorlersuup up to the long-term mass balance equilibrium line altitude at ~1600 m above sea level. The bed topography shows highly variable subglacial trough systems, and the trough of the Isunnguata Sermia Glacier is over-deepened and reaches an elevation of several hundreds of meters below sea level. The ice surface is smooth and only reflects the bedrock topography in a subtle way, resulting in a highly variable ice thickness. The southern part of our study area consists of higher bed elevations compared to the northern part. The covered area is one of the most studied regions of the Greenland Ice Sheet with studies of mass balance, dynamics, and supraglacial lakes, and our combined dataset can be valuable for detailed studies of ice sheet dynamics and hydrology. The compiled datasets of ground-based and airborne radar surveys are accessible for reviewers (password protected) at doi.pangaea.de/10.1594/pangaea.830314 and will be freely available in the final revised paper.


2011 ◽  
Vol 5 (1) ◽  
pp. 299-313 ◽  
Author(s):  
G. E. Flowers ◽  
N. Roux ◽  
S. Pimentel ◽  
C. G. Schoof

Abstract. Glacier surges are a well-known example of an internal dynamic oscillation whose occurrence is not a direct response to the external climate forcing, but whose character (i.e. period, amplitude, mechanism) may depend on the glacier's environmental or climate setting. We examine the dynamics of a small (∼5 km2) valley glacier in Yukon, Canada, where two previous surges have been photographically documented and an unusually slow surge is currently underway. To characterize the dynamics of the present surge, and to speculate on the future of this glacier, we employ a higher-order flowband model of ice dynamics with a regularized Coulomb-friction sliding law in both diagnostic and prognostic simulations. Diagnostic (force balance) calculations capture the measured ice-surface velocity profile only when non-zero basal water pressures are prescribed over the central region of the glacier, coincident with where evidence of the surge has been identified. This leads to sliding accounting for 50–100% of the total surface motion in this region. Prognostic simulations, where the glacier geometry evolves in response to a prescribed surface mass balance, reveal a significant role played by a bedrock ridge beneath the current equilibrium line of the glacier. Ice thickening occurs above the ridge in our simulations, until the net mass balance reaches sufficiently negative values. We suggest that the bedrock ridge may contribute to the propensity for surges in this glacier by promoting the development of the reservoir area during quiescence, and may permit surges to occur under more negative balance conditions than would otherwise be possible. Collectively, these results corroborate our interpretation of the current glacier flow regime as indicative of a slow surge that has been ongoing for some time, and support a relationship between surge incidence or character and the net mass balance. Our results also highlight the importance of glacier bed topography in controlling ice dynamics, as observed in many other glacier systems.


1997 ◽  
Vol 24 ◽  
pp. 355-360 ◽  
Author(s):  
Jack Kohler ◽  
John Moore ◽  
Mike Kennett ◽  
Rune Engeset ◽  
Hallgeir Elvehøy

In traditional mass-balance measurements one estimates winter snow accumulation by identifying the depth to the previous summer’s snow or ice surface using a snow probe. This is labor-intensive and unreliable for inhomogeneous summer surfaces. Another method is to image internal reflection horizons using a ground-penetrating radar (GPR), which has advantages in speed and areal coverage over traditional probing. However, to obtain quantitative mass-balance measurements from GPR images one needs to convert the time scale to a depth scale, not a straightforward problem. We compare a GPR section with dielectric profiles and visual stratigraphy of three snow cores, manual probings, and previous mass-balance measurements. We relate changes in snow-core dielectric properties to changes in density and to the travel times of reflecting horizons in the GPR section, and correlate some of these reflecting horizons with previous summer surfaces. We conclude that GPR can be used as a complementary tool in mass-balance measurements, giving a wide areal survey of winter accumulation and net balance for preceding years. However, proper calibration is essential for identifying specific surfaces in the radar data.


Geosciences ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 355 ◽  
Author(s):  
Joanna Sziło ◽  
Robert Bialik

Glacial forefields areas are dynamic landscapes, and due to the glacier frontal position changes, they are sensitive to climatic fluctuations. The results of the analysis of aerial photos, satellite imagery, archival maps, and terrestrial laser scanning surveys are presented. These investigations reveal that the ice surface decreased during the period 1989–2001, when almost the entire current forefield was already uncovered. Moreover, it is shown that, since 1969, there has been a relationship between the changes in air temperature and the changes of the annual front position rate of Baranowski Glacier. Specifically, the results demonstrate that during the cooling observed for the Antarctic Peninsula Regions since 2000, there is a deceleration of the recession rate and ice surface elevation changes of Baranowski Glacier. It is also shown that the fluctuation of the areal extent of the glacier as well as ice surface elevation changes are closely associated with proglacial relief. Moreover, it is shown that the difference in the retreat of the northern and southern tongue of the glacier can be explained by the presence of relatively warm water in the shallow bay, which can enhance the melting process of the northern part. In addition, existence of long flutes and crevasse fill ridges on the analyzed forefield of Baranowski Glacier suggest that the former episodes of its surge, which could happen at least in the northern part of the forefield and middle part of the southern forefield of the glacier.


Sign in / Sign up

Export Citation Format

Share Document