scholarly journals Thwaites Glacier grounding-line retreat: influence of width and buttressing parameterizations

2014 ◽  
Vol 60 (220) ◽  
pp. 305-313 ◽  
Author(s):  
David Docquier ◽  
David Pollard ◽  
Frank Pattyn

AbstractMajor ice loss has recently been observed along coastal outlet glaciers of the West Antarctic ice sheet, mainly due to increased melting below the ice shelves. However, the behavior of this marine ice sheet is poorly understood, leading to significant shortcomings in ice-sheet models attempting to predict future sea-level rise. The stability of a marine ice sheet is controlled by the dynamics at the grounding line, the boundary between the grounded ice stream and the floating ice shelf. One of the largest contributors to current sea-level rise is the fast-flowing Thwaites Glacier, which flows into the Amundsen Sea. Here we use an ice-stream/ice-shelf model and perform a number of experiments along a central flowline to analyze the sensitivity of its grounding line on centennial timescales. In the absence of width and buttressing effects, we find that the grounding line retreats by ˜300 km in 200 years from the present day (rate of 1.5 km a–1). With variable glacier width implemented in the model, flow convergence slows the retreat of Thwaites grounding line at 0.3–1.2 km a–1. The parameterization of ice-shelf buttressing according to different observed scenarios further reduces the glacier retreat and can even lead to a slight advance in the most buttressed case.

1979 ◽  
Vol 24 (90) ◽  
pp. 213-230 ◽  
Author(s):  
Craig S. Lingle ◽  
James A. Clark

AbstractThe Antarctic ice sheet has been reconstructed at 18000 years b.p. by Hughes and others (in press) using an ice-flow model. The volume of the portion of this reconstruction which contributed to a rise of post-glacial eustatic sea-level has been calculated and found to be (9.8±1.5) × 106 km3. This volume is equivalent to 25±4 m of eustatic sea-level rise, defined as the volume of water added to the ocean divided by ocean area. The total volume of the reconstructed Antarctic ice sheet was found to be (37±6) × 106 km3. If the results of Hughes and others are correct, Antarctica was the second largest contributor to post-glacial eustatic sea-level rise after the Laurentide ice sheet. The Farrell and Clark (1976) model for computation of the relative sea-level changes caused by changes in ice and water loading on a visco-elastic Earth has been applied to the ice-sheet reconstruction, and the results have been combined with the changes in relative sea-level caused by Northern Hemisphere deglaciation as previously calculated by Clark and others (1978). Three families of curves have been compiled, showing calculated relative sea-level change at different times near the margin of the possibly unstable West Antarctic ice sheet in the Ross Sea, Pine Island Bay, and the Weddell Sea. The curves suggest that the West Antarctic ice sheet remained grounded to the edge of the continental shelf until c. 13000 years b.p., when the rate of sea-level rise due to northern ice disintegration became sufficient to dominate emergence near the margin predicted otherwise to have been caused by shrinkage of the Antarctic ice mass. In addition, the curves suggest that falling relative sea-levels played a significant role in slowing and, perhaps, reversing retreat when grounding lines approached their present positions in the Ross and Weddell Seas. A predicted fall of relative sea-level beneath the central Ross Ice Shelf of as much as 23 m during the past 2000 years is found to be compatible with recent field evidence that the ice shelf is thickening in the south-east quadrant.


2015 ◽  
Vol 9 (2) ◽  
pp. 1887-1942 ◽  
Author(s):  
S. L. Cornford ◽  
D. F. Martin ◽  
A. J. Payne ◽  
E. G. Ng ◽  
A. M. Le Brocq ◽  
...  

Abstract. We use the BISICLES adaptive mesh ice sheet model to carry out one, two, and three century simulations of the fast-flowing ice streams of the West Antarctic Ice Sheet. Each of the simulations begins with a geometry and velocity close to present day observations, and evolves according to variation in meteoric ice accumulation, ice shelf melting, and mesh resolution. Future changes in accumulation and melt rates range from no change, through anomalies computed by atmosphere and ocean models driven by the E1 and A1B emissions scenarios, to spatially uniform melt rates anomalies that remove most of the ice shelves over a few centuries. We find that variation in the resulting ice dynamics is dominated by the choice of initial conditions, ice shelf melt rate and mesh resolution, although ice accumulation affects the net change in volume above flotation to a similar degree. Given sufficient melt rates, we compute grounding line retreat over hundreds of kilometers in every major ice stream, but the ocean models do not predict such melt rates outside of the Amundsen Sea Embayment until after 2100. Sensitivity to mesh resolution is spurious, and we find that sub-kilometer resolution is needed along most regions of the grounding line to avoid systematic under-estimates of the retreat rate, although resolution requirements are more stringent in some regions – for example the Amundsen Sea Embayment – than others – such as the Möller and Institute ice streams.


2020 ◽  
Vol 66 (260) ◽  
pp. 891-904 ◽  
Author(s):  
Sainan Sun ◽  
Frank Pattyn ◽  
Erika G. Simon ◽  
Torsten Albrecht ◽  
Stephen Cornford ◽  
...  

AbstractAntarctica's ice shelves modulate the grounded ice flow, and weakening of ice shelves due to climate forcing will decrease their ‘buttressing’ effect, causing a response in the grounded ice. While the processes governing ice-shelf weakening are complex, uncertainties in the response of the grounded ice sheet are also difficult to assess. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) compares ice-sheet model responses to decrease in buttressing by investigating the ‘end-member’ scenario of total and sustained loss of ice shelves. Although unrealistic, this scenario enables gauging the sensitivity of an ensemble of 15 ice-sheet models to a total loss of buttressing, hence exhibiting the full potential of marine ice-sheet instability. All models predict that this scenario leads to multi-metre (1–12 m) sea-level rise over 500 years from present day. West Antarctic ice sheet collapse alone leads to a 1.91–5.08 m sea-level rise due to the marine ice-sheet instability. Mass loss rates are a strong function of the sliding/friction law, with plastic laws cause a further destabilization of the Aurora and Wilkes Subglacial Basins, East Antarctica. Improvements to marine ice-sheet models have greatly reduced variability between modelled ice-sheet responses to extreme ice-shelf loss, e.g. compared to the SeaRISE assessments.


1979 ◽  
Vol 24 (90) ◽  
pp. 213-230 ◽  
Author(s):  
Craig S. Lingle ◽  
James A. Clark

AbstractThe Antarctic ice sheet has been reconstructed at 18000 years b.p. by Hughes and others (in press) using an ice-flow model. The volume of the portion of this reconstruction which contributed to a rise of post-glacial eustatic sea-level has been calculated and found to be (9.8±1.5) × 106km3. This volume is equivalent to 25±4 m of eustatic sea-level rise, defined as the volume of water added to the ocean divided by ocean area. The total volume of the reconstructed Antarctic ice sheet was found to be (37±6) × 106km3. If the results of Hughes and others are correct, Antarctica was the second largest contributor to post-glacial eustatic sea-level rise after the Laurentide ice sheet. The Farrell and Clark (1976) model for computation of the relative sea-level changes caused by changes in ice and water loading on a visco-elastic Earth has been applied to the ice-sheet reconstruction, and the results have been combined with the changes in relative sea-level caused by Northern Hemisphere deglaciation as previously calculated by Clark and others (1978). Three families of curves have been compiled, showing calculated relative sea-level change at different times near the margin of the possibly unstable West Antarctic ice sheet in the Ross Sea, Pine Island Bay, and the Weddell Sea. The curves suggest that the West Antarctic ice sheet remained grounded to the edge of the continental shelf untilc. 13000 years b.p., when the rate of sea-level rise due to northern ice disintegration became sufficient to dominate emergence near the margin predicted otherwise to have been caused by shrinkage of the Antarctic ice mass. In addition, the curves suggest that falling relative sea-levels played a significant role in slowing and, perhaps, reversing retreat when grounding lines approached their present positions in the Ross and Weddell Seas. A predicted fall of relative sea-level beneath the central Ross Ice Shelf of as much as 23 m during the past 2000 years is found to be compatible with recent field evidence that the ice shelf is thickening in the south-east quadrant.


2015 ◽  
Vol 9 (4) ◽  
pp. 1579-1600 ◽  
Author(s):  
S. L. Cornford ◽  
D. F. Martin ◽  
A. J. Payne ◽  
E. G. Ng ◽  
A. M. Le Brocq ◽  
...  

Abstract. We use the BISICLES adaptive mesh ice sheet model to carry out one, two, and three century simulations of the fast-flowing ice streams of the West Antarctic Ice Sheet, deploying sub-kilometer resolution around the grounding line since coarser resolution results in substantial underestimation of the response. Each of the simulations begins with a geometry and velocity close to present-day observations, and evolves according to variation in meteoric ice accumulation rates and oceanic ice shelf melt rates. Future changes in accumulation and melt rates range from no change, through anomalies computed by atmosphere and ocean models driven by the E1 and A1B emissions scenarios, to spatially uniform melt rate anomalies that remove most of the ice shelves over a few centuries. We find that variation in the resulting ice dynamics is dominated by the choice of initial conditions and ice shelf melt rate and mesh resolution, although ice accumulation affects the net change in volume above flotation to a similar degree. Given sufficient melt rates, we compute grounding line retreat over hundreds of kilometers in every major ice stream, but the ocean models do not predict such melt rates outside of the Amundsen Sea Embayment until after 2100. Within the Amundsen Sea Embayment the largest single source of variability is the onset of sustained retreat in Thwaites Glacier, which can triple the rate of eustatic sea level rise.


2021 ◽  
Author(s):  
Tanja Schlemm ◽  
Johannes Feldmann ◽  
Ricarda Winkelmann ◽  
Anders Levermann

Abstract. Due to global warming and particularly high regional ocean warming, both Thwaites and Pine Island glaciers in the Amundsen region of the Antarctic Ice Sheet could lose their buttressing ice shelves over time. We analyze the possible consequences using the Parallel Ice Sheet Model (PISM), applying a simple cliff-calving parameterization and an ice-mélange-buttressing model. We find that the instantaneous loss of ice-shelf buttressing, due to enforced ice-shelf melting, initiates grounding line retreat and triggers the marine ice sheet instability (MISI). As a consequence, the grounding line progresses into the interior of the West Antarctic Ice Sheet and leads to a sea level contribution of 0.6 m within 100 a. By subjecting the exposed ice cliffs to cliff calving using our simplified parameterization, we also analyze the marine ice cliff instability (MICI). In our simulations it can double or even triple the sea level contribution depending on the only loosely constraint parameter which determines the maximum cliff-calving rate. The speed of MICI depends on this upper bound on the calving rate which is given by the ice mélange buttressing the glacier. However, stabilization of MICI may occur for geometric reasons. Since the embayment geometry changes as MICI advances into the interior of the ice sheet, the upper bound on calving rates is reduced and the progress of MICI is slowed down. Although we cannot claim that our simulations bear relevant quantitative estimates of the effect of ice-mélange buttressing on MICI, the mechanism has the potential to stop the instability. Further research is needed to evaluate its role for the past and future evolution of the Antarctic Ice Sheet.


2021 ◽  
Author(s):  
Tanja Schlemm ◽  
Anders Levermann

<p>Due to ocean warming in the Amundsen sea, pine island glacier and thwaites glacier could lose their buttressing ice shelves in the near future. This would lead to glacier retreat through the marine ice sheet instability and could be accelerated by additional cliff calving (marine ice cliff instability). Using the Parallel Ice Sheet Model (PISM-PIK) we investigate this in a regional setup of the West Antarctic Ice Sheet. We remove floating ice in the Amundsen sea and investigate the resulting glacier retreat without additional cliff calving and with cliff calving with a range of maximum calving rates. We find that without additional cliff calving, the removal of the ice shelves in the Amundsen sea leads to a glacier retreat that is equivalent to 0.4-0.6m of sea level rise in 100 years, consistent with earlier simulations of other models (ABUMIP and LARMIP-2). Cliff calving can more than double this number.</p>


2017 ◽  
Vol 58 (75pt2) ◽  
pp. 193-198 ◽  
Author(s):  
Kathleen Huybers ◽  
Gerard Roe ◽  
Howard Conway

ABSTRACT Using observations of basal topography, ice thickness and modern accumulation rates, we use theory and a dynamic flowline model to examine the sensitivity of Antarctica's Foundation Ice Stream to changes in sea level, accumulation and buttressing at the grounding line. Our sensitivity studies demonstrate that the steep, upward-sloping basal topography inland from the grounding line serves to stabilize retreat of the ice stream, while the upward-sloping submarine topography downstream from the grounding line creates the potential for significant advance under conditions of modest sea-level lowering and/or increased accumulation rate. Extrapolating from Foundation Ice Stream, many nearby Weddell Sea sector ice streams are in a similar configuration, suggesting that the historical and projected responses of this sector's ice streams may contrast with those in the Amundsen or Ross Sea sectors. This work reaffirms that the greatest concerns for rapid West Antarctic Ice Sheet (WAIS) retreat are locations of reverse slopes, muted basal topography and limited lateral support.


2001 ◽  
Vol 47 (157) ◽  
pp. 271-282 ◽  
Author(s):  
Richard C.A. Hindmarsh ◽  
E. Le Meur

AbstractMarine ice sheets with mechanics described by the shallow-ice approximation by definition do not couple mechanically with the shelf. Such ice sheets are known to have neutral equilibria. We consider the implications of this for their dynamics and in particular for mechanisms which promote marine ice-sheet retreat. The removal of ice-shelf buttressing leading to enhanced flow in grounded ice is discounted as a significant influence on mechanical grounds. Sea-level rise leading to reduced effective pressures under ice streams is shown to be a feasible mechanism for producing postglacial West Antarctic ice-sheet retreat but is inconsistent with borehole evidence. Warming thins the ice sheet by reducing the average viscosity but does not lead to grounding-line retreat. Internal oscillations either specified or generated via a MacAyeal–Payne thermal mechanism promote migration. This is a noise-induced drift phenomenon stemming from the neutral equilibrium property of marine ice sheets. This migration occurs at quite slow rates, but these are sufficiently large to have possibly played a role in the dynamics of the West Antarctic ice sheet after the glacial maximum. Numerical experiments suggest that it is generally true that while significant changes in thickness can be caused by spatially uniform changes, spatial variability coupled with dynamical variability is needed to cause margin movement.


2018 ◽  
Vol 857 ◽  
pp. 648-680 ◽  
Author(s):  
Samuel S. Pegler

A long-standing open question in glaciology concerns the propensity for ice sheets that lie predominantly submerged in the ocean (marine ice sheets) to destabilise under buoyancy. This paper addresses the processes by which a buoyancy-driven mechanism for the retreat and ultimate collapse of such ice sheets – the marine ice sheet instability – is suppressed by lateral stresses acting on its floating component (the ice shelf). The key results are to demonstrate the transition between a mode of stable (easily reversible) retreat along a stable steady-state branch created by ice-shelf buttressing to tipped (almost irreversible) retreat across a critical parametric threshold. The conditions for triggering tipped retreat can be controlled by the calving position and other properties of the ice-shelf profile and can be largely independent of basal stress, in contrast to principles established from studies of unbuttressed grounding-line dynamics. The stability and recovery conditions introduced by lateral stresses are analysed by developing a method of constructing grounding-line stability (bifurcation) diagrams, which provide a rapid assessment of the steady-state positions, their natures and the conditions for secondary grounding, giving clear visualisations of global stabilisation conditions. A further result is to reveal the possibility of a third structural component of a marine ice sheet that lies intermediate to the fully grounded and floating components. The region forms an extended grounding area in which the ice sheet lies very close to flotation, and there is no clearly distinguished grounding line. The formation of this region generates an upsurge in buttressing that provides the most feasible mechanism for reversal of a tipped grounding line. The results of this paper provide conceptual insight into the phenomena controlling the stability of the West Antarctic Ice Sheet, the collapse of which has the potential to dominate future contributions to global sea-level rise.


Sign in / Sign up

Export Citation Format

Share Document