scholarly journals Electromagnetic Sounding of Bottom Crevasses on the Ross Ice Shelf, Antarctica

1979 ◽  
Vol 24 (90) ◽  
pp. 321-330 ◽  
Author(s):  
Kenneth C. Jezek ◽  
Charles R. Bentley ◽  
John W. Clough

AbstractDuring the 1976—77 season of the Ross Ice Shelf Geophysical and Glaciological Survey, a series of vertical electromagnetic sounding profiles of subsurface features was completed at station J-9. The survey comprised three five-kilometer north-west-south-east profiles separated by one kilometer and six two-kilometer north-east-south-west profiles, and was carried out on the surface using 35 MHz and 50 MHz radar systems. Folded-dipole antennae were used and oriented to detect reflectors both along and perpendicular to the profile path. This was done to facilitate the interpretation of the data, which indicated a complex system of bottom crevasses. Measurements of the positions, heights, and shapes of these crevasses showed at least two sets of crevasses varying in both strike and size. The larger crevasses, about 120 m high and oriented more or less normal to the flow direction, are probably associated with the movement of ice stream B across the grounding line between the West Antarctic ice sheet and the Ross Ice Shelf. A satisfactory explanation for the secondary set of crevasses, about 60 m high and forming an angle of 60° ±10° with the first set, has not yet been found.

1979 ◽  
Vol 24 (90) ◽  
pp. 321-330 ◽  
Author(s):  
Kenneth C. Jezek ◽  
Charles R. Bentley ◽  
John W. Clough

AbstractDuring the 1976—77 season of the Ross Ice Shelf Geophysical and Glaciological Survey, a series of vertical electromagnetic sounding profiles of subsurface features was completed at station J-9. The survey comprised three five-kilometer north-west-south-east profiles separated by one kilometer and six two-kilometer north-east-south-west profiles, and was carried out on the surface using 35 MHz and 50 MHz radar systems. Folded-dipole antennae were used and oriented to detect reflectors both along and perpendicular to the profile path. This was done to facilitate the interpretation of the data, which indicated a complex system of bottom crevasses. Measurements of the positions, heights, and shapes of these crevasses showed at least two sets of crevasses varying in both strike and size. The larger crevasses, about 120 m high and oriented more or less normal to the flow direction, are probably associated with the movement of ice stream B across the grounding line between the West Antarctic ice sheet and the Ross Ice Shelf. A satisfactory explanation for the secondary set of crevasses, about 60 m high and forming an angle of 60° ±10° with the first set, has not yet been found.


1979 ◽  
Vol 24 (90) ◽  
pp. 309-312 ◽  
Author(s):  
Joseph F. Kirchner ◽  
Charles R. Bentley ◽  
James D. Robertson

AbstractSeismic compressional-wave data from short refraction shooting carried out during the 1974–75 and 1976–77 seasons at J-9, the site of the Ross Ice Shelf Drilling Project, have been compared. Significant dissimilarities were found to exist between the two sets of data. The measurements were made at locations about 2 km apart, with three unreversed profiles 60° apart recorded during the 1976–77 season and one unreversed profile during the 1974–75 season. The resulting velocity–depth profiles, and hence the derived density–depth profiles, differ by as much as 8%, with the 1976–77 results indicating a maximum velocity, corresponding to solid ice, at a shallower depth than the 1974–75 data. Both profiles were subjected to the same analysis, and a comparison of travel-time curves shows the differences to be real. Densities measured on cores from a 100 m bore hole drilled in 1974–75 about 50 m from the center of the 1974–75 profile agree well with densities computed from that profile. The density difference is believed to be due to the passage of the ice through the high-stress system associated with the interaction between Ice Stream B, flowing in from the West Antarctic ice sheet, and the Ross Ice Shelf. A reversed refraction profile carried out at station B.C. about 30 km up-stream, shows evidence of dipping layers that may be similarly caused.


2007 ◽  
Vol 19 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Gerald L. Kooyman ◽  
David G. Ainley ◽  
Grant Ballard ◽  
Paul J. Ponganis

The arrival in January 2001 in the south-west Ross Sea of two giant icebergs, C16 and B15A, subsequently had dramatic affects on two emperor penguin colonies. B15A collided with the north-west tongue of the Ross Ice Shelf at Cape Crozier, Ross Island, in the following months and destroyed the penguins' nesting habitat. The colony totally failed in 2001, and years after, with the icebergs still in place, exhibited reduced production that ranged from 0 to 40% of the 1201 chicks produced in 2000. At Beaufort Island, 70 km NW of Crozier, chick production declined to 6% of the 2000 count by 2004. Collisions with the Ross Ice Shelf at Cape Crozier caused incubating adults to be crushed, trapped in ravines, or to abandon the colony and, since 2001, to occupy poorer habitat. The icebergs separated Beaufort Island from the Ross Sea Polynya, formerly an easy route to feeding and wintering areas. This episode has provided a glimpse of events which have probably occurred infrequently since the West Antarctic Ice Sheet began to retreat 12 000 years ago. The results allow assessment of recovery rates for one colony decimated by both adult and chick mortality, and the other colony by adult abandonment and chick mortality.


1979 ◽  
Vol 24 (90) ◽  
pp. 309-312 ◽  
Author(s):  
Joseph F. Kirchner ◽  
Charles R. Bentley ◽  
James D. Robertson

AbstractSeismic compressional-wave data from short refraction shooting carried out during the 1974–75 and 1976–77 seasons at J-9, the site of the Ross Ice Shelf Drilling Project, have been compared. Significant dissimilarities were found to exist between the two sets of data. The measurements were made at locations about 2 km apart, with three unreversed profiles 60° apart recorded during the 1976–77 season and one unreversed profile during the 1974–75 season. The resulting velocity–depth profiles, and hence the derived density–depth profiles, differ by as much as 8%, with the 1976–77 results indicating a maximum velocity, corresponding to solid ice, at a shallower depth than the 1974–75 data. Both profiles were subjected to the same analysis, and a comparison of travel-time curves shows the differences to be real. Densities measured on cores from a 100 m bore hole drilled in 1974–75 about 50 m from the center of the 1974–75 profile agree well with densities computed from that profile. The density difference is believed to be due to the passage of the ice through the high-stress system associated with the interaction between Ice Stream B, flowing in from the West Antarctic ice sheet, and the Ross Ice Shelf. A reversed refraction profile carried out at station B.C. about 30 km up-stream, shows evidence of dipping layers that may be similarly caused.


1984 ◽  
Vol 5 ◽  
pp. 95-99 ◽  
Author(s):  
B. J. McInnes ◽  
W. F. Budd

The dynamic state of the West Antarctic ice sheet has been termed the grand problem of glaciology. An attempt is presented to assess it by simulating the observed ice thickness and ice velocities along a cross-section from ice stream B (Ross Sea) to Pine Island Glacier (Pine Island Bay) with a numerical model developed from the one described by Budd and McInnes (1978). A kinematic analysis with topographical and regime data from various sources shows the mass fluxes observed near the grounding line of the Ross Ice Shelf to be of the order expected for steady-state balance. Deformation of the ice accounts for only a small fraction of the observed flow there. Simulations (to be described in detail elsewhere) with the Budd/McInnes surging mechanism can approximate the existing ice thickness as a post-surge feature but fail to reproduce the high balance velocities. Both these velocities and the existing ice-thickness profile are simulated successfully as a state of steady sliding, with parameterizations involving the ice thickness above that corresponding to buoyancy and realistically assumed longitudinal strain-rates. A range of results is presented to illustrate the sensitivity of the simulation to changes in various parameters.


1988 ◽  
Vol 11 ◽  
pp. 199 ◽  
Author(s):  
D. D. Blankenship ◽  
C. R. Bentley

Both in the interior of West Antarctica and on Ross Ice Shelf the ice column is dominated by ice with a distinct preferred c-axis orientation. An understanding of the dynamics of the West Antarctic ice sheet requires that we know the gross crystalline structure that characterizes each of its glaciological regimes (i.e. ice sheet, ice stream, and ice shelf). An important question is whether the strong fabric of the interior ice is preserved when this ice passes through the zone in which it is accelerated from sheet flow to stream flow, a zone that must be marked by strong longitudinal extension. Using generalized inverse techniques we have inverted seismic-reflection travel times observed at Upstream Β camp (on Ice Stream B) to obtain the gross crystalline structure of the ice column at that location. We find that the strong fabrics of the interior are indeed destroyed; only a slight preferred orientation remains. The evidence at Upstream Β camp is particularly strong because shear waves of both polarizations, which are particularly sensitive indicators of anisotropy, were analyzed as well as P-waves.


1979 ◽  
Vol 24 (90) ◽  
pp. 500 ◽  
Author(s):  
C. R. Bentley ◽  
L. Greischar

Abstract Taking various retreat-rates for the presumed grounded ice sheet in the Ross embayment during Wisconsin time, as calculated by Thomas (Thomas and Bentley, 1978), and assuming a time constant of 4400 years for isostatic rebound, a sea-floor uplift of 100±50 m still to be expected in the grid western part of the Ross Ice Shelf can be calculated. The expected uplift diminishes from grid west to grid east, and is probably negligible in the eastern half of the shelf area. There are extensive areas near the present grounding line where the water depth beneath the shelf is less than 100 m, so that uplift would lead to grounding. As grounding occurred, the neighboring ice shelf would thicken, causing grounding to advance farther. This process would probably extend the grounding line to a position running grid north-eastward across the shelf from the seaward end of Roosevelt Island, deeply indented by the extensions of the present ice streams. Floating ice would remain in the grid south-eastern half of the shelf.


2021 ◽  
Author(s):  
◽  
Laurine van Haastrecht

<p>The Siple Coast ice streams, which drain the West Antarctic Ice Sheet into the Ross Ice Shelf, are susceptible to temporal changes in flow dynamics. The Kamb Ice Stream on the Siple Coast, stagnated approximately 160 years ago, thought to partially be the result of basal water diversion. The character of its subglacial environment can exert an important control on long- and short-term ice sheet and ice stream fluctuations. Were the Kamb Ice Stream to reactivate in response to subglacial or future climate change, it would have the potential to contribute more substantially to ice discharge into the Ross Ice Shelf. Therefore, it is important to characterise the present-day subglacial environment and climatic conditions that may reactivate this flow. This study investigates the present-day subglacial conditions of the Kamb Ice Stream and how these conditions may be affected by environmental perturbations. Due to the difficult nature of making direct observations of ice sheet basal conditions, other methods are employed to investigate the response of the Kamb Ice Stream to environmental change. Active source seismic surveying data obtained during the 2015/16 and 2018/19 austral summer seasons provides an instantaneous snapshot of the present-day basal conditions. Flowline and whole-continent numerical ice sheet modelling is used to investigate the longer-term response of the Kamb Ice Stream and the West Antarctic Ice Sheet. Amplitude analysis of seismic lines indicate saturated till beneath the Ross Ice Shelf in the vicinity of the grounding zone, which is supported by retreat rates of the Kamb Ice Stream grounding zone post-stagnation. Seismic reflection imaging suggests potential dewatered till conditions beneath the grounded Kamb Ice Stream. Flowline modelling of the Kamb Ice Stream indicates that changes to the water content of the subglacial sediments appear to be self regulating, with high reversibility over centennial timescales. Oceanic temperature forcings are the key driver of change of the Kamb Ice Stream, and the ice stream is susceptible to topographic pinning points in 2D and lateral drag. Future glaciological change is more likely to occur in response to oceanic than to atmospheric temperature perturbations. Results from 3D continent-wide modelling experiments also find that precipitation increases offset the effect of air temperature perturbations and influence subglacial conditions, indicating more dynamic ice stream behaviour on the Siple Coast. This study has worked to re-enforce and strengthen our existing understanding of the Kamb Ice Stream and its sensitivity to environmental change. Future work using higher-resolution simulations and a higher density of observational data may help refine these results.</p>


1982 ◽  
Vol 3 ◽  
pp. 341 ◽  
Author(s):  
Kenneth C. Jezek ◽  
Charles R. Bentley

Surface and airborne radar sounding data were used to identify and map fields of bottom crevasses on the Ross Ice Shelf. Two major concentrations of crevasses were found, one along the grid-eastern grounding line and another, made up of eight smaller sites, grid-west of Crary Ice Rise. Based upon an analysis of bottom crevasse heights and locations, and of the strength of radar waves diffracted from the apex and bottom corners of the gridcrevasses, we conclude that the crevasses are formed at discrete locations on the ice shelf. By comparing the locations of crevasse formation with ice thickness and bottom topography, we conclude that most of the crevasse sites are associated with grounding. Hence we have postulated that six grounded areas, in addition to Crary Ice Rise and Roosevelt Island, exist in the grid-western sector of the ice shelf. These pinning points may be important for interpreting the dynamics of the West Antarctic ice sheet.


1978 ◽  
Vol 10 (2) ◽  
pp. 150-170 ◽  
Author(s):  
Robert H. Thomas ◽  
Charles R. Bentley

Marine ice sheets are grounded on land which was below sea level before it became depressed under the ice-sheet load. They are inherently unstable and, because of bedrock topography after depression, the collapse of a marine ice sheet may be very rapid. In this paper equations are derived that can be used to make a quantitative estimate of the maximum size of a marine ice sheet and of when and how rapidly retreat would take place under prescribed conditions. Ice-sheet growth is favored by falling sea level and uplift of the seabed. In most cases the buttressing effect of a partially grounded ice shelf is a prerequisite for maximum growth out to the edge of the continental shelf. Collapse is triggered most easily by eustatic rise in sea level, but it is possible that the ice sheet may self-destruct by depressing the edge of the continental shelf so that sea depth is increased at the equilibrium grounding line.Application of the equations to a hypothetical “Ross Ice Sheet” that 18,000 yr ago may have covered the present-day Ross Ice Shelf indicates that, if the ice sheet existed, it probably extended to a line of sills parallel to the edge of the Ross Sea continental shelf. By allowing world sea level to rise from its late-Wisconsin minimum it was possible to calculate retreat rates for individual ice streams that drained the “Ross Ice Sheet.” For all the models tested, retreat began soon after sea level began to rise (∼15,000 yr B.P.). The first 100 km of retreat took between 1500 and 2500 yr but then retreat rates rapidly accelerated to between 0.5 and 25 km yr−1, depending on whether an ice shelf was present or not, with corresponding ice velocities across the grounding line of 4 to 70 km yr−1. All models indicate that most of the present-day Ross Ice Shelf was free of grounded ice by about 7000 yr B.P. As the ice streams retreated floating ice shelves may have formed between promontories of slowly collapsing stagnant ice left behind by the rapidly retreating ice streams. If ice shelves did not form during retreat then the analysis indicates that most of the West Antarctic Ice Sheet would have collapsed by 9000 yr B.P. Thus, the present-day Ross Ice Shelf (and probably the Ronne Ice Shelf) serves to stabilize the West Antarctic Ice Sheet, which would collapse very rapidly if the ice shelves were removed. This provides support for the suggestion that the 6-m sea-level high during the Sangamon Interglacial was caused by collapse of the West Antarctic Ice Sheet after climatic warming had sufficiently weakened the ice shelves. Since the West Antarctic Ice Sheet still exists it seems likely that ice shelves did form during Holocene retreat. Their effect was to slow and, finally, to halt retreat. The models that best fit available data require a rather low shear stress between the ice shelf and its sides, and this implies that rapid shear in this region encouraged the formation of a band of ice with a preferred crystal fabric, as appears to be happening today in the floating portions of fast bounded glaciers.Rebound of the seabed after the ice sheet had retreated to an equilibrium position would allow the ice sheet to advance once more. This may be taking place today since analysis of data from the Ross Ice Shelf indicates that the southeast corner is probably growing thicker with time, and if this persists then large areas of ice shelf must become grounded. This would restrict drainage from West Antarctic ice streams which would tend to thicken and advance their grounding lines into the ice shelf.


Sign in / Sign up

Export Citation Format

Share Document