subglacial environment
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 24)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Author(s):  
◽  
Laurine van Haastrecht

<p>The Siple Coast ice streams, which drain the West Antarctic Ice Sheet into the Ross Ice Shelf, are susceptible to temporal changes in flow dynamics. The Kamb Ice Stream on the Siple Coast, stagnated approximately 160 years ago, thought to partially be the result of basal water diversion. The character of its subglacial environment can exert an important control on long- and short-term ice sheet and ice stream fluctuations. Were the Kamb Ice Stream to reactivate in response to subglacial or future climate change, it would have the potential to contribute more substantially to ice discharge into the Ross Ice Shelf. Therefore, it is important to characterise the present-day subglacial environment and climatic conditions that may reactivate this flow. This study investigates the present-day subglacial conditions of the Kamb Ice Stream and how these conditions may be affected by environmental perturbations. Due to the difficult nature of making direct observations of ice sheet basal conditions, other methods are employed to investigate the response of the Kamb Ice Stream to environmental change. Active source seismic surveying data obtained during the 2015/16 and 2018/19 austral summer seasons provides an instantaneous snapshot of the present-day basal conditions. Flowline and whole-continent numerical ice sheet modelling is used to investigate the longer-term response of the Kamb Ice Stream and the West Antarctic Ice Sheet. Amplitude analysis of seismic lines indicate saturated till beneath the Ross Ice Shelf in the vicinity of the grounding zone, which is supported by retreat rates of the Kamb Ice Stream grounding zone post-stagnation. Seismic reflection imaging suggests potential dewatered till conditions beneath the grounded Kamb Ice Stream. Flowline modelling of the Kamb Ice Stream indicates that changes to the water content of the subglacial sediments appear to be self regulating, with high reversibility over centennial timescales. Oceanic temperature forcings are the key driver of change of the Kamb Ice Stream, and the ice stream is susceptible to topographic pinning points in 2D and lateral drag. Future glaciological change is more likely to occur in response to oceanic than to atmospheric temperature perturbations. Results from 3D continent-wide modelling experiments also find that precipitation increases offset the effect of air temperature perturbations and influence subglacial conditions, indicating more dynamic ice stream behaviour on the Siple Coast. This study has worked to re-enforce and strengthen our existing understanding of the Kamb Ice Stream and its sensitivity to environmental change. Future work using higher-resolution simulations and a higher density of observational data may help refine these results.</p>


2021 ◽  
Author(s):  
◽  
Laurine van Haastrecht

<p>The Siple Coast ice streams, which drain the West Antarctic Ice Sheet into the Ross Ice Shelf, are susceptible to temporal changes in flow dynamics. The Kamb Ice Stream on the Siple Coast, stagnated approximately 160 years ago, thought to partially be the result of basal water diversion. The character of its subglacial environment can exert an important control on long- and short-term ice sheet and ice stream fluctuations. Were the Kamb Ice Stream to reactivate in response to subglacial or future climate change, it would have the potential to contribute more substantially to ice discharge into the Ross Ice Shelf. Therefore, it is important to characterise the present-day subglacial environment and climatic conditions that may reactivate this flow. This study investigates the present-day subglacial conditions of the Kamb Ice Stream and how these conditions may be affected by environmental perturbations. Due to the difficult nature of making direct observations of ice sheet basal conditions, other methods are employed to investigate the response of the Kamb Ice Stream to environmental change. Active source seismic surveying data obtained during the 2015/16 and 2018/19 austral summer seasons provides an instantaneous snapshot of the present-day basal conditions. Flowline and whole-continent numerical ice sheet modelling is used to investigate the longer-term response of the Kamb Ice Stream and the West Antarctic Ice Sheet. Amplitude analysis of seismic lines indicate saturated till beneath the Ross Ice Shelf in the vicinity of the grounding zone, which is supported by retreat rates of the Kamb Ice Stream grounding zone post-stagnation. Seismic reflection imaging suggests potential dewatered till conditions beneath the grounded Kamb Ice Stream. Flowline modelling of the Kamb Ice Stream indicates that changes to the water content of the subglacial sediments appear to be self regulating, with high reversibility over centennial timescales. Oceanic temperature forcings are the key driver of change of the Kamb Ice Stream, and the ice stream is susceptible to topographic pinning points in 2D and lateral drag. Future glaciological change is more likely to occur in response to oceanic than to atmospheric temperature perturbations. Results from 3D continent-wide modelling experiments also find that precipitation increases offset the effect of air temperature perturbations and influence subglacial conditions, indicating more dynamic ice stream behaviour on the Siple Coast. This study has worked to re-enforce and strengthen our existing understanding of the Kamb Ice Stream and its sensitivity to environmental change. Future work using higher-resolution simulations and a higher density of observational data may help refine these results.</p>


Author(s):  
L. M. Simkins ◽  
S. L. Greenwood ◽  
S. Munevar Garcia ◽  
E. A. Eareckson ◽  
J. B. Anderson ◽  
...  

2021 ◽  
Author(s):  
Robert Storrar ◽  
Andrew Jones ◽  
Frances Butcher ◽  
Nico Dewald ◽  
Chris Clark ◽  
...  

&lt;p&gt;Meltwater exerts an important influence on ice sheet dynamics and has attracted an increasing amount of attention over the last 20 years. However, the active subglacial environment remains difficult to study mainly due to its inaccessibility. Understanding of the dimensions, pattern, and extent of subglacial meltwater conduits at the ice sheet scale is limited to relatively sparse observations. We address this gap by using the geomorphological record of Quaternary ice sheets as a proxy to quantify the dimensions and pattern of subglacial conduits at the ice sheet scale. We present the results of a high-resolution (2 m), large sample (n&gt;50,000) study of three-dimensional esker morphometry at sample locations in SW Finland and Nunavut, Canada. Detailed mapping of esker crestlines and outlines permits the quantification of a number of parameters, including: length, width, height, cross-sectional area, volume, sinuosity, cross-sectional symmetry, and uphill/downhill trends. Whilst the dimensions of eskers reflect depositional processes as well as simply the size of the parent conduit, they nevertheless offer a powerful tool for understanding the size and shape of meltwater conduits and the configuration of subglacial drainage systems across large areas (entire ice sheets), and over long periods of time (from years to thousands of years) in both high spatial and temporal resolution. The results may be used to: (1) inform numerical models of subglacial meltwater drainage, (2) inform process models of esker formation, and (3) provide a dataset of esker morphometry against which other features may be compared (e.g. sinuous ridges on Mars).&lt;/p&gt;


2021 ◽  
Author(s):  
Ankit Pramanik ◽  
Nick Hayes ◽  
Frank Pattyn ◽  
Sandra Arndt

&lt;p&gt;The Greenland ice sheet surface melt has increased substantially in intensity and spatial extent over the recent decades. The rapid migration of melt towards upstream areas of Greenland ice sheet is expected to incur major changes in hydrological behaviour of the ice sheet and outlet glaciers along with changes in export fluxes of carbon, methane, and other nutrient fluxes, which, in turn, will further affect the downstream ecosystem of rivers, fjords and oceans. Subglacial environments are emerging as ecological hotspots, urging detailed understanding of interaction between subglacial hydrology and biogeochemistry. However, due to their inaccessibility, the hydrology and geochemistry of subglacial environment thus far lacks a detailed understanding. As such this area is now the focus of many major projects in Greenland and Antarctica.&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Under the NuttI (&lt;strong&gt;Nut&lt;/strong&gt;rient fac&lt;strong&gt;t&lt;/strong&gt;ories under the &lt;strong&gt;I&lt;/strong&gt;ce) project, we aim to develop a hydrological-biogeochemical model framework to investigate seasonal and inter-annual evolution of subglacial hydrology system and quantify carbon and nutrient export from subglacial environments to proglacial rivers. We use the subglacial hydrology model GlaDS (Glacier Drainage System model) to simulate seasonal and interannual evolution of distributed and channelized subglacial water flow while calculating subglacial water storage, residence time, water flux and effective pressure. A subglacial erosion scheme is coupled to the model to calculate physical weathering occurring especially in early melt and peak melt season due to glacier sliding and higher water flow, respectively. All these parameters are used in a geochemical model to quantify subglacial chemical weathering fluxes. The meltwater becomes chemically enriched subglacially and reaches the glacier outlet through subglacial channels. We also intend to further develop the model to investigate processes such as subglacial cycling of silica and production of methane.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;We primarily use the coupled model to simulate Leverett glacier, a land-terminating outlet glacier in southwest Greenland which has been well studied with different geophysical measurements and long-term monitoring. The model output is validated with the in-situ measurement of discharge and export fluxes in the proglacial river of the land-terminating glacier.&amp;#160;&lt;/p&gt;


2021 ◽  
Author(s):  
Katarzyna Warburton ◽  
Duncan Hewitt ◽  
Jerome Neufeld

&lt;p&gt;The dynamics of soft-bedded glacial sliding over saturated till are poorly constrained and difficult to realistically capture in large scale models. While experiments characterise till as a plastic material with a pressure dependent yield stress, large scale models rely on a viscous or power-law description of the subglacial environment to efficiently constrain the basal sliding rate of the ice. Further, the subglacial water pressure may fluctuate on timescales from annual to daily, leading to transient adjustment of the till.&lt;/p&gt;&lt;p&gt;We construct a continuum two-phase model of coupled fluid and solid flows, using Darcy flow for the fluid phase and a recently described saturated granular model for the solid. After verifying our model against the steady-state experiments, we force the model with a fluctuating effective pressure at the ice-till interface and infer the resulting relationships between basal traction, porosity, rate of deformation, and till flux. Shear dilation introduces internal pressure variations, leading to hysteretic behaviour in low-permeability materials, resulting in a time-dependent effective sliding law.&lt;/p&gt;


2021 ◽  
Author(s):  
Silvia Frisia ◽  
Péter Németh ◽  
Andrea Borsato ◽  
John C. Hellstrom ◽  
Attila Demény ◽  
...  

&lt;p&gt;Calcite crusts from the Elephant Hill Moraine (EHM) (76&amp;#176;17'35&quot; S &amp;#160;157&amp;#176;20'05&quot; E) collected during 1983-84 &amp;#160;were interpreted as formed in subglacial environments influenced by hydrothermalism (Faure et al., 1988). More recently, &lt;sup&gt;234&lt;/sup&gt;U enrichment in these crusts was used to suggest that during the warm MIS 11 interglacial (ca. 400 ka), the ice sheet margin at the Wilkes Basin retreated about 700 km inland (Blackburn et al., 2020). Their &lt;sup&gt;234&lt;/sup&gt;U data from separate analyses of pure calcite and pure opal crusts suggested that &amp;#8220;connate seawater would impart marine signatures to subglacial waters&amp;#8221; (Blackburn et al., 2020), with the former associated with massive melting during MIS 11. &amp;#160;However, robust U-series dating by Blackburn et al (2020) was only possible on pure end members of opal and calcite, whilst other EHM crusts did not yield reliable ages and were discarded. The inferred MIS11 ice-loss was then based on a model of &lt;sup&gt;234&lt;/sup&gt;U accumulation and on those carbonate ages that fit their hypothesis that connate seawater influenced the subglacial environment.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Here, we investigated the nanostructure of EMH samples that yielded unreliable U-Th ages, which were too old to fit into the &lt;sup&gt;234&lt;/sup&gt;U-based model of MIS11 connate seawater influencing subglacial waters. High-resolution transmission electron microscope images showed a complex history of precipitation, dissolution, re-precipitation, including the co-precipitation of nanocrystalline calcite and opal. Co-precipitation was documented by the inclusion of micrometre-scale opal spherules within calcite crystals whose lattice orientation does not change across the spherules and can be explained by the fluid being extremely enriched in silica. The calcite immediately surrounding the opal spherules was characterized by twins and likely a response to sub-ice sheet stress during their precipitation. The calcite-opal mixture partially replaced pre-existing calcite crystals, which appear broken, corroded and pre-date a final, pure calcite void-filling cement. Clearly, these EHM samples document several stages of crystallization, which imply repeated mobilization of chemical species. Preliminary Fluid Inclusion analyses of the crusts yielded a temperature of about 85&lt;sup&gt;o&lt;/sup&gt;C, which inferred that at one stage calcite precipitation may have been influenced by hydrothermalism associated with volcanism.&amp;#160; Our identification of complex crystallization histories for the Elephant Moraine subglacial carbonates opens up alternative formation hypotheses to that proposed by Blackburn et al. (2020) such as the existence of multiple sources of aqueous solutions. Consequently, it is fraught to infer that all the EMH formed from connate marine waters generated 400 ka without dating of multiple phases of calcite precipitation from each sample.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;References: Blackburn, T. et al. 2020, Nature, 583 (7817), pp.554-559. Faure, G.&amp;#160; et al, 1988, Nature, 332(6162), pp.352-354.&lt;/p&gt;


2021 ◽  
pp. 1-13
Author(s):  
Keith Makinson ◽  
Paul G. D. Anker ◽  
Jonathan Garcés ◽  
David J. Goodger ◽  
Scott Polfrey ◽  
...  

Abstract Recent drilling successes on Rutford Ice Stream in West Antarctica demonstrate the viability of hot water drilling subglacial access holes to depths >2000 m. Having techniques to access deep subglacial environments reliably paves the way for subglacial lake exploration beneath the thick central West Antarctic Ice Sheet. An ideal candidate lake, overlain by ~2650 m of ice, identified by Centro de Estudios Científicos (CECs), Chile, has led to collaboration with British Antarctic Survey to access Subglacial Lake CECs (SLCECs). To conform with the Scientific Committee on Antarctic Research code of conduct, which provides a guide to responsible scientific exploration and stewardship of these pristine systems, any access drilling must minimise all aspects of contamination and disturbance of the subglacial environment. To meet these challenges, along with thicker ice and 2000 m elevation, pumping and water treatment systems developed for the Subglacial Lake Ellsworth project, together with new diesel generators, additional water heating and longer drill hose, are currently being integrated with the BEAMISH hot water drill. A dedicated test season near SLCECs will commission the new clean hot water drill, with testing and validation of all clean operating procedures. A subsequent season will then access SLCECs cleanly.


2021 ◽  
pp. 1-17
Author(s):  
Paul G. D. Anker ◽  
Keith Makinson ◽  
Keith W. Nicholls ◽  
Andrew M. Smith

Abstract During the 2018/19 Antarctic field season, the British Antarctic Survey (BAS) Basal conditions on Rutford Ice Stream: BEd Access, Monitoring and Ice Sheet History’ (BEAMISH) project drilled three holes through the Rutford Ice Stream, West Antarctica. At up to 2154 m, these are the deepest hot water drilled subglacial access holes yet created, enabling the recovery of sediment from the subglacial environment, and instrumenting the ice stream and its bed. The BEAMISH hot-water drill system was built on extensive experience with the BAS ice shelf hot-water drill and utilises many identical components. With up to 1 MW of heating power available, the hot water drill produces 140 L min−1 of water at 85°C to create a 300 mm diameter access hole to the base of the ice stream. New systems and processes were developed for BEAMISH to aid critical aspects of deep access drilling, most notably the creation of cavities interlinking boreholes at 230 m below the surface and enabling water recirculation throughout the deep drilling operations. The modular design of the BEAMISH drill offers many benefits in its adaptability, redundancy, and minimal logistical footprint. These design features can easily accommodate the modifications needed for future deep, clean access hole creation in the exploration of subglacial environments.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1332
Author(s):  
Miguel Ramos ◽  
Gonçalo Vieira ◽  
Miguel Angel de Pablo ◽  
Antonio Molina ◽  
Juan Javier Jimenez

The Antarctic Peninsula (AP) region has been one of the regions on Earth with strongest warming since 1950. However, the northwest of the AP showed a cooling from 2000 to 2015, which had local consequences with an increase in snow accumulation and a deceleration in the loss of mass from glaciers. In this paper, we studied the effects of increased snow accumulation in the permafrost thermal regime in two boreholes (PG1 and PG2) in Livingston Island, South Shetlands Archipelago, from 2009 to 2015. The two boreholes located c. 300 m apart but at similar elevation showed different snow accumulation, with PG2 becoming completely covered with snow all year long, while the other remained mostly snow free during the summer. The analysis of the thermal regimes and of the estimated soil surface energy exchange during the study period showed the effects of snow insulation in reducing the active layer thickness. These effects were especially relevant in PG2, which transitioned from a subaerial to a subnival regime. There, permafrost aggraded from below, with the active layer completely disappearing and the efficiency of thermal insulation by the snowpack prevailing in the thermal regime. This situation may be used as an analogue for the transition from a periglacial to a subglacial environment in longer periods of cooling in the paleoenvironmental record.


Sign in / Sign up

Export Citation Format

Share Document