scholarly journals Clathrate Ices—Recent Results

1978 ◽  
Vol 21 (85) ◽  
pp. 33-49
Author(s):  
D. W. Davidson ◽  
J. A. Ripmeester

AbstractThe last five years have seen an increasing interest in clathrate ices as a result of the discovery of extensive deposits of natural gas hydrates in permafrost regions. Twenty-six new clathrate hydrates have been identified, mainly by NMR, including a tetragonal hydrate of dimethyl ether. N-butane and neopentane have been found to be enclathrated in natural gas hydrates, the former as a gauche conformer. As a result of their high symmetries, encaged neopentane, CF4, SF6, and SeF6 exhibit a Resing apparent-phase-change effect in the temperature range of NMR line narrowing. There is increasing evidence that reorientational jumps of water molecules are more frequent than translational jumps in clathrate ices. This is certainly so for ethylene oxide-d4 and tetrahydrofuran-d8 hydrates for which two regions of proton line narrowing and two T1ρ minima have been observed. The reorientational motions of most guest molecules in structure II hydrates only become isotropic on a time scale long enough to permit the cage configurations to be averaged to 43m symmetry by reorientation of the water molecules. The orientations of the water molecules remain disordered to the lowest temperatures.

1978 ◽  
Vol 21 (85) ◽  
pp. 33-49 ◽  
Author(s):  
D. W. Davidson ◽  
J. A. Ripmeester

Abstract The last five years have seen an increasing interest in clathrate ices as a result of the discovery of extensive deposits of natural gas hydrates in permafrost regions. Twenty-six new clathrate hydrates have been identified, mainly by NMR, including a tetragonal hydrate of dimethyl ether. N-butane and neopentane have been found to be enclathrated in natural gas hydrates, the former as a gauche conformer. As a result of their high symmetries, encaged neopentane, CF4, SF6, and SeF6 exhibit a Resing apparent-phase-change effect in the temperature range of NMR line narrowing. There is increasing evidence that reorientational jumps of water molecules are more frequent than translational jumps in clathrate ices. This is certainly so for ethylene oxide-d4 and tetrahydrofuran-d8 hydrates for which two regions of proton line narrowing and two T 1ρ minima have been observed. The reorientational motions of most guest molecules in structure II hydrates only become isotropic on a time scale long enough to permit the cage configurations to be averaged to 4 3m symmetry by reorientation of the water molecules. The orientations of the water molecules remain disordered to the lowest temperatures.


Author(s):  
U.P. Igboanusi ◽  
J.U. Okere

Natural gas hydrates are ice-like materials which exist in permafrost regions and in the continental margins of oceans. They constitute a huge unconventional reservoir of natural gas around the globe including offshore Nigeria. The paper is a review of this important global resource with particular focus on the Nigerian deposits. The reasons for the interest on hydrates are discussed including the potential for the recovery of large quantities of methane, the climate change and ocean floor instability that may result from their dissociation. They may also be exploited for large-scale CO2 sequestration. The geographical distribution of hydrates deposits on earth, the thermodynamics of why they occur in those particular places and source of the methane gas that is eventually enchlathrated into hydrates are discussed. The natural gas in the Nigerian hydrate is essentially biogenic in origin and is almost pure methane (more than 99% methane). The hydrates exist in finely disseminated or massive aggregate forms within clay-rich sediment.


2020 ◽  
Vol 70 (1) ◽  
pp. 57-75
Author(s):  
John Jong ◽  
◽  
Hui Sin Goh ◽  
Steve McGiveron ◽  
Jim Fitton ◽  
...  

Natural gas hydrates (NGHs), sometimes referred to as “flammable ice”, are crystalline solids, consisting of hydrocarbon gases with low molecular weight, such as methane, ethane and propane, bound with water molecules within cage-like lattices. The water molecules and low molecular weight NGH lattices are stable within a specific range of temperatures and pressures, and the source of the gases can be biogenic or thermogenic in origin. NGHs are common in the upper hundreds of metres of sub-seafloor sediments on the continental margins at water depths greater than about 500 m. Seismic reflection profiles and wireline well logs are common indicators used to identify the presence of NGHs, which are often encountered during offshore deepwater exploration drilling. They may cause geohazards such as slope instability, expulsion of the seafloor, shallow water flows and shallow gas if the stability of penetrated NGHs is disturbed and starts to dissociate. Methane gas hydrates represent a significant potential energy resource, as illustrated in this case study from offshore NW Sabah and may represent one of the world’s largest reservoirs of carbon-based fuel, with some estimates suggest that the hydrocarbons bound in the form of NGHs may rival the total energy resources contained in other conventional hydrocarbon sources. Methane can be extracted from NGHs through three methods: depressurization, inhibitor injection and thermal stimulation. However, risk associated with NGHs extraction can contribute to environmental concerns such as global warming and a decrease in microbial communities associated with methane hydrate ecosystem. Presently, in many countries, national programs exist for the research and production of natural gas from NGH deposits. As a result, hundreds of deposits have been discovered, with a few hundred wells drilled and kilometres of NGH cores studied. Hence, in the future (pending improved gas price and extraction technology), methane gas hydrates could be a vast source of natural gas supply.


2004 ◽  
Vol 336 (9) ◽  
pp. 751-765 ◽  
Author(s):  
Benoı̂t Beauchamp

Sign in / Sign up

Export Citation Format

Share Document