scholarly journals COMPARISON OF THE IN VITRO DISSOLUTION PROFILES FOR A HIGH SOLUBILITY DRUG FROM IMMEDIATE RELEASE FORMULATIONS USING USP APPARATUSES 3 AND 4

FARMACIA ◽  
2018 ◽  
Vol 66 (3) ◽  
pp. 477-482 ◽  
Author(s):  
MONICA ARDELEAN
2017 ◽  
Vol 44 (5) ◽  
pp. 723-728 ◽  
Author(s):  
Nathalie R. Wingert ◽  
Natália O. dos Santos ◽  
Sarah C. Campanharo ◽  
Elisa S. Simon ◽  
Nadia M. Volpato ◽  
...  

2021 ◽  
Vol 24 ◽  
pp. 548-562
Author(s):  
Matthias Shona Roost ◽  
Henrike Potthast ◽  
Chantal Walther ◽  
Alfredo García-Arieta ◽  
Ivana Abalos ◽  
...  

This article describes an overview of waivers of in vivo bioequivalence studies for additional strengths in the context of the registration of modified release generic products and is a follow-up to the recent publication for the immediate release solid oral dosage forms. The current paper is based on a survey among the participating members of the Bioequivalence Working Group for Generics (BEWGG) of the International Pharmaceutical Regulators Program (IPRP) regarding this topic. Most jurisdictions consider the extrapolation of bioequivalence results obtained with one (most sensitive) strength of a product series as less straightforward for modified release products than for immediate release products. There is consensus that modified release products should demonstrate bioequivalence not only in the fasted state but also in the fed state, but differences exist regarding the necessity of additional multiple dose studies. Fundamental differences between jurisdictions are revealed regarding requirements on the quantitative composition of different strengths and the differentiation of single and multiple unit dosage forms. Differences in terms of in vitro dissolution requirements are obvious, though these are mostly related to possible additional comparative investigations rather than regarding the need for product-specific methods. As with the requirements for immediate release products, harmonization of the various regulations for modified release products is highly desirable to conduct the appropriate studies from a scientific point of view, thus ensuring therapeutic equivalence.


Author(s):  
Abhishek Kumar Singh ◽  
Kasif Shakeel

In the present investigation, immediate release tablet formulation of etizolam was developed for management of insomnia and anxiety using different Superdisintegrants (Sodium Starch Glycolate, Croscarmellose, Crospovidone), Povidone K-30 and Magnesium stearate by wet granulation method. The drug-excipients interaction was investigated by UV spectrophotometer. The granules and tablets of Etizolam were evaluated for various pre and post compression parameters like angle of repose, compressibility index, hausners ratio, tablet hardness, friability and in vitro disintegration and dissolution studies and their results were found to be satisfactory. These results suggest that maximum in vitro dissolution profile of formulation F6 were found to have equivalent percentage of drug release and concluded that F6 is better and similar to innovator product.


2015 ◽  
Vol 18 (2) ◽  
pp. 157-162
Author(s):  
Samira Karim ◽  
Mohiuddin Ahmed Bhuiyan ◽  
Md Sohel Rana

This work aims at the design of a sustained release formulation of glimepiride which is currently available in the treatment of type 2 diabetes mellitus and to investigate the effect of polymers on the release profile of glimepiride. Glimepiride sustained release tablets were prepared by direct compression method using different ratios of various release retarding polymers such as carbopol, ethyl cellulose, methocel K4 MCR, methocel K15 MCR, methocel K100 MCR and xanthum gum. These formulations were also compared with glimepiride immediate release tablets. The prepared tablets were subjected to various physical parameter tests including weight variation, friability, hardness, thickness, diameter, etc. In vitro dissolution studies of the formulations were done at pH 6.8 in phosphate buffer using USP apparatus 2 (paddle method) at 50 rpm. The percent releases of all the formulations (30) were 73.11%- 98.76% after 8 hours. The release pattern followed zero order kinetics and the release of the drug was hindered by the polymers used in the study. On the other hand, 100% drug was released within 1 hour from the immediate release tablet of glimepiride. The study reveals that the polymers used have the capacity to retard the release of the drug from the sustained release tablets and the more is the amount of the polymer in the formulation the less is the release of drug showing more retardation of drug release.Bangladesh Pharmaceutical Journal 18(2): 157-162, 2015


2014 ◽  
Vol 17 (2) ◽  
pp. 207 ◽  
Author(s):  
Yady Juliana Manrique-Torres ◽  
Danielle J Lee ◽  
Faiza Islam ◽  
Lisa M Nissen ◽  
Julie A.Y. Cichero ◽  
...  

Purpose. To evaluate the influence of co-administered vehicles on in vitro dissolution in simulated gastric fluid of crushed immediate release tablets as an indicator for potential drug bioavailability compromise. Methods. Release and dissolution of crushed amlodipine, atenolol, carbamazepine and warfarin tablets were tested with six foods and drinks that are frequently used in the clinical setting as mixers for crushed medications (water, orange juice, honey, yoghurt, strawberry jam and water thickened with Easythick powder) in comparison to whole tablets. Five commercial thickening agents (Easythick Advanced, Janbak F, Karicare, Nutilis, Viscaid) at three thickness levels were tested for their effect on the dissolution of crushed atenolol tablets. Results. Atenolol dissolution was unaffected by mixing crushed tablets with thin fluids or food mixers in comparison to whole tablets or crushed tablets in water, but amlodipine was delayed by mixing with jam. Mixing crushed warfarin and carbamazepine tablets with honey, jam or yoghurt caused them to resemble the slow dissolution of whole tablets rather than the faster dissolution of crushed tablets in water or orange juice. Crushing and mixing any of the four medications with thickened water caused a significant delay in dissolution. When tested with atenolol, all types of thickening agents at the greatest thickness significantly restricted dissolution, and products that are primarily based on xanthan gum also delayed dissolution at the intermediate thickness level. Conclusions. Dissolution testing, while simplistic, is a widely used and accepted method for comparing drug release from different formulations as an indicator for in vivo bioavailability. Thickened fluids have the potential to retard drug dissolution when used at the thickest levels. These findings highlight potential clinical implications of the addition of these agents to medications for the purpose of dose delivery and indicate that further investigation of thickened fluids and their potential to influence therapeutic outcomes is warranted. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


Author(s):  
HANAN M. HASHEM ◽  
AYA R. ABDOU ◽  
NADIA M. MURSI ◽  
LAILA H. EMARA

Objective: This study was proposed to evaluate and compare the in vitro dissolution profiles of six Metformin Hydrochloride (MH) market products. Methods: Different dissolution apparatuses (USP apparatus II, IV and beaker method) were used to evaluate the dissolution profiles (in phosphate buffer, pH 6.8) of two immediate release (IR) generic products of Metformin Hydrochloride (MH): Cidophage® 1000 mg (G1, Egyptian market) and Metformin arrow® 1000 mg (G2, French market) with respect to the reference products named Glucophage® 850 mg (R1, Egyptian market and R2, French market). In addition to a generic controlled-release (CR) product; Cidophage Retard® 850 mg (G3) versus the reference product; Glucophage XR® 1000 mg (R3) (both from Egyptian market). Dissolution efficiency (D. E.) and the similarity factor (f2) were calculated. Weight uniformity, hardness, tablet dimensions and MH content were measured. Results: Results of the three apparatuses showed that MH IR products studied (reference and generics) did not meet the 75% USP 30 specifications for MH dissolved at 30 min. For MH CR products, Glucophage XR® did not fulfill the USP release criteria, while Cidophage Retard® did. USP apparatus IV revealed the highest sensitivity and discriminative capability. Conclusion: Generally, MH IR generics (G1 and G2) might be interchangeable with the innovator product (Glucophage®). However, Cidophage Retard® might not be interchangeable with Glucophage XR®.


2021 ◽  
Vol 10 (1) ◽  
pp. 056-073
Author(s):  
Ivana Mitrevska ◽  
Hristijan Mickoski ◽  
Katerina Brezovska ◽  
Aneta Dimitrovska

The aim of this study was to compare the in vitro dissolution behaviour of reference (R) and generic-test (T) medicinal products with non-linear effects model. Mathematical function Weibull, was employed as basis for the non-linear effects model, coupled with MATLABTM simulation software to describe the release profile of the active substance. Medicinal products selected for the presented study include immediate-release tablets Concor 10 mg and Bisoprolol 10 mg, which belongs to BCS class 1 of biopharmaceutics classification system. The result from the study indicated that Weibull distribution function coupled with computer-based program is more useful for comparison of the dissolution profiles. This combined approach provides robust and informative results, with accurate estimation on the in vitro performance for the medicinal products and it’s the most suitable tool for prediction of in vivo behaviour of the medicinal product. In summary, we have employed Simulink graphical programming to design our system in a simulation environment.


2019 ◽  
Vol 64 (02) ◽  
pp. 27-34
Author(s):  
Emilija Janeva ◽  
Liljana Anastasova ◽  
Irena Slaveska Spirevska ◽  
Tatjana Rusevska ◽  
Tanja Bakovska Stoimenova ◽  
...  

Dissolution testing of generic immediate release solid dosage forms represents a valuable tool to obtain dissolution profiles and to establish the similarity/dissimilarity between tested dosage forms. In this study, the in vitro dissolution profiles of generic immediate-release moxifloxacin (MOX) film coated tablets and a referent pharmaceutical product were compared and evaluated. The dissolution behavior of the generic product was investigated in three different dissolution media (pH=1.2, 4.5 and 6.8). The amount of dissolved MOX was determined using validated UV spectrophotometric method. For comparison of the dissolution behavior, the similarity factor, f2, was used. The dissolution profile of the generic product showed a release of >85 % MOX in the time frame of 30 min, in all the tested dissolution media. The similarity factor, f2, calculated from the comparison of the dissolution profiles of the generic and the referent pharmaceutical product in pH=1.2 dissolution medium was 50, 58, thus the products were established as similar. Based on the results of our study, the dissolution similarity between the generic MOX immediate-release film coated tablet and the referent product could be successfully used as a part of the approach to ensure their in vivo bioequivalence. Keywords: moxifloxacin, immediate-release solid dosage forms, dissolution, in vitro similarity


Sign in / Sign up

Export Citation Format

Share Document