scholarly journals In Vitro Dissolution Studies of Immediate-Release and Extended-Release Formulations Using Flow-Through Cell Apparatus 4

2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Shi Qiu ◽  
Ke Wang ◽  
Mingzhong Li
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hanxi Yi ◽  
Fan Liu ◽  
Guoqing Zhang ◽  
Zeneng Cheng

The present study evaluated the ability of a modified flow-through method for predicting in vivo performance of immediate release (IR) and extended release (ER) formulations. In vitro dissolution of two model drugs, paracetamol IR tablets and felodipine ER tablets, was investigated under tuned conditions using the modified flow-through method and compared with the compendial quality control (QC) basket method. The in vivo absorption properties of paracetamol IR tablets and felodipine ER tablets were investigated in healthy volunteers. In vitro-in vivo correlation (IVIVC) analysis was performed based on the obtained in vitro and in vivo data. Our results demonstrated that the compendial QC method was not able to reflect in vivo actual absorption, while satisfactory discriminatory power and comparable in vitro dissolution/in vivo absorption were achieved for both paracetamol IR tablets and felodipine ER tablets by the modified flow-through method. This study indicated that the modified flow-through method is a potential tool to reflect in vivo performance of the IR and ER formulations.


2009 ◽  
Vol 45 (4) ◽  
pp. 829-840 ◽  
Author(s):  
Ruchi Tiwari ◽  
Birendra Srivastava ◽  
Gaurav Tiwari ◽  
Awanik Rai

The present study investigated a novel extended release system of promethazine hydrochloride (PHC) with acrylic polymers Eudragit RL100 and Eudragit S100 in different weight ratios (1:1 and 1: 5), and in combination (0.5+1.5), using freeze-drying and spray-drying techniques. Solid dispersions were characterized by Fourier-transformed infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), Powder X-ray diffractometry (PXRD), Nuclear magnetic resonance (NMR), Scanning electron microscopy (SEM), as well as solubility and in vitro dissolution studies in 0.1 N HCl (pH 1.2), double-distilled water and phosphate buffer (pH 7.4). Adsorption tests from drug solution to solid polymers were also performed. A selected solid dispersion system was developed into capsule dosage form and evaluated for in vitro dissolution studies. The progressive disappearance of drug peaks in thermotropic profiles of spray-dried dispersions were related to increasing amount of polymers, while SEM studies suggested homogenous dispersion of drug in polymer. Eudragit RL100 had a greater adsorptive capacity than Eudragit S100, and thus its combination in (0.5+1.5) for S100 and RL 100 exhibited a higher dissolution rate with 97.14% drug release for twelve hours. Among different formulations, capsules prepared by combination of acrylic polymers using spray-drying (1:0.5 + 1.5) displayed extended release of drug for twelve hours with 96.87% release followed by zero order kinetics (r²= 0.9986).


2014 ◽  
Vol 22 (2) ◽  
pp. 141-147 ◽  
Author(s):  
José Raúl Medina ◽  
Dulce Karina Salazar ◽  
Marcela Hurtado ◽  
Alma Rosa Cortés ◽  
Adriana Miriam Domínguez-Ramírez

2013 ◽  
Vol 1 (02) ◽  
pp. 01-08
Author(s):  
B. Brahmaiah ◽  
K. Sasikanth ◽  
Sreekanth Nama ◽  
P. Suresh ◽  
Patan Adam Khan

In the present study, design of oral immediate release tablets of Valsartan by direct compression technique was carried out. The main aim and objective of the work is to formulate immediate release tablets using different direct compression vehicles (DCV’S) in different ratios. The main motive is to compare the dissolution profile of these formulations and conclude the best formulation which release drug at a faster rate. To determine the best fit dissolution profile for the dosage forms. Valsartan tablets were formulated by using microcrystalline cellulose (diluents), potato starch, acacia (binder) and magnesium stearate (lubricant). The granules were compressed into tablets and were subjected to dissolution studies. The dissolution profile of the formulation F2 was found to have better dissolution rate compared to others. The In-vitro dissolution studies of all the formulations were conducted and the results were obtained, it was concluded that formulation F2 was the best with fast release of drug compared to others.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 323-328
Author(s):  
Umamaheswara Rao T ◽  
Smitha M ◽  
Maghiben M ◽  
Damodara Velayudham A

The detached of the current research progress a bilayer tablet of aceclofenac utilizing sodium starch glycolate (SSG) and croscarmellose sodium (CCS) as super disintegrants for the formulation of immediate-release layer whereas polymers such as methocel K15M, Lubrizol 971P were utilized by the formulation of sustaining layer. The tablets were equipped by straight density technique. The organized tablets were estimated for pre-compressed parameters like micromeritic properties and post compressed parameters like bulk variation, aceclofenac satisfied and in-vitro dissolution studies. The in-vitro dissolution studies showed about 86.78 % of aceclofenac release from the bilayer tablet, indicating that a preliminary burst release of aceclofenac followed by sustaining action up to 12 h by the sustained layer of the tablets. In-Vitro kinetic data revealed that all the formulations surveyed the Higuchi prototype via fickian dispersal as announcement device subsequently the preliminary rupture announcement. FT-IR studies exposed here is no communication among the drug and polymers utilized in the study. The errand of medication is to safeguard and reestablish wellbeing and to soothe languishing. In this context, the most commonly used pain-relieving agent is aceclofenac an NSAID. In the present investigation, aceclofenac bilayer tablets were prepared to provide sustain effect for better therapeutic effect. These points of interest, clarify the requirement for the planning of changed medication conveyance framework.


Author(s):  
SHIREESH KIRAN R ◽  
CHANDRA SHEKAR B ◽  
NAGENDRA BABU B

Objective: The present research work concerns the development of the extended release of Ritonavir floating matrix tablets, designed to prolong the gastric residence time, increase the drug bioavailability, and diminish the side effects of irritating drugs. Methods: The floating tablets of Ritonavir were prepared by direct compression method using different grades of hydroxypropyl methylcellulose (HPMC), crospovidone, Polyox WSR 303, and sodium bicarbonate, as gas generating agent. Evaluation parameters and in vivo radiographic studies were conducted in suitable model. Results: Among all formulations, F21 was chosen as optimized formulation based on evaluation parameters such as floating lag time (33 s), total floating time (>24 h), and in vitro dissolution studies. From in vitro dissolution studies, the optimized formulation F21 and marketed product were shown 98.67% and 91.46±5.02% of drug release, respectively. The main appliance of medication discharge follows zero-order kinetics and non- Fickian transport by coupled diffusion and erosion. In vivo experiments maintained the potentials in extending the gastric residence time in the fasted state in beagle dogs. The mean gastric residence time of the optimized formulation found to be 330 min±40 in the stomach, where longer gastric residence time is an important condition for prolonged or controlled drug release and also for enhanced bioavailability. Conclusion: From in vitro and in vivo radiographic studies, Ritonavir floating tablets estimated to provide novel choice for harmless, inexpensive, and extended release for the effective management of AIDS.


2021 ◽  
Vol 11 ◽  
Author(s):  
Mohit Kumar ◽  
Uttam Kumar Mandal

: The objective of the present article is to review various aspects of dissolution studies of dosage forms performed with the flow-through apparatus (USP type–IV apparatus). USP type-IV apparatus is comprised of a pump that compels the dissolution media upwards via the flow-through cell. A reservoir of dissolution medium is attached to the cell that is mounted vertically with a filter system to restrain the escape of un-dissolved particles. The apparatus is specially designed for powders, micro particles, pellets, and tablets. In this type of in vitro dissolution method, the test sample is placed in the bottom of the small-volume flow-through cell, and the solvent passes through it at a temperature of 37°C. This study is significant to build up the in-vivo and in-vitro relationship. Likewise, this study is used to distinguish the extent of medication released from the tested sample to foresee it’s in vivo viability in the actual patient population. The flow-through cell is used to determine the dissolution of micro-particulate, suppositories, implants, controlled-release formulations with drugs that have very low aqueous solubility. The drugs with small particle size and large surface area are dissolved at a faster rate as compared to other existing and compendia dissolution apparatuses. The article also highlights some of the in vitro dissolution studies carried out with the USP type-IV apparatus.


1997 ◽  
Vol 13 (4) ◽  
pp. 177-180
Author(s):  
Helena M Payssé ◽  
Marta Vázquez ◽  
Pietro L Fagiolino

Objective: To assess the bioequivalence between two extended-release formulations of theophylline using saliva as the biologic fluid. Design: Randomized two-way crossover design. Participants: Eight healthy, nonsmoking volunteers (7 women, 1 man) between 23 and 41 years of age took a single dose (250 mg) of two extended-release formulations of theophylline (form A, tablet; form B, capsule). Results: Significant differences were found at 2, 4, 6, and 8 hours (p < 0.001), with the in vitro dissolution test between both formulations. ANOVA for AUC, maximum concentration (Cmax), average concentration, and %Cmax – 100 showed significant differences between both formulations in the in vivo trial. Conclusions: The tablet and capsule formulations of extended-release theophylline are bioinequivalent when saliva is used as the biologic fluid for performing these studies.


Sign in / Sign up

Export Citation Format

Share Document