scholarly journals Internet of Things Architecture Based Cloud for Healthcare

2018 ◽  
Vol 1 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Istabraq M. Al-Joboury ◽  
Emad H. Hemiary

The Internet of Things (IoT) contains smart devices placed in different environments, connected with each other across networks and Internet. The integration between Things and Cloud Computing (CC) for monitoring and permanent storage is required for future IoT applications. Therefore, this paper proposes IoT architecture based Cloud for healthcare network when patients are remotely monitored by their family and physicians. This proposed architecture is different from the traditional IoT architecture that consists of Things, getaways, middleware, and application layers which in turn need connectivity insurance between them. The proposed architecture is designed and configured using Cisco Packet Tracer version 7.0 over two sites: Site 'A' located at smart home and site 'B' located at the smart hospital. The results show that the IoT based Cloud enhances the patient life style by using smart sensors and mobile application, as well as the physicians can remotely monitor the data in real time.

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2783 ◽  
Author(s):  
Linh-An Phan ◽  
Taehong Kim

Smart home is one of the most promising applications of the Internet of Things. Although there have been studies about this technology in recent years, the adoption rate of smart homes is still low. One of the largest barriers is technological fragmentation within the smart home ecosystem. Currently, there are many protocols used in a connected home, increasing the confusion of consumers when choosing a product for their house. One possible solution for this fragmentation is to make a gateway to handle the diverse protocols as a central hub in the home. However, this solution brings about another issue for manufacturers: compatibility. Because of the various smart devices on the market, supporting all possible devices in one gateway is also an enormous challenge. In this paper, we propose a software architecture for a gateway in a smart home system to solve the compatibility problem. By creating a mechanism to dynamically download and update a device profile from a server, the gateway can easily handle new devices. Moreover, the proposed gateway also supports unified control over heterogeneous networks. We implemented a prototype to prove the feasibility of the proposed gateway architecture and evaluated its performance from the viewpoint of message execution time over heterogeneous networks, as well as the latency for device profile downloads and updates, and the overhead needed for handling unknown commands.


Author(s):  
Tanishka and Prof. Shikha Gupta

The internet of things, or IoT, is a system of interrelated computing devices, mechanical and digital machines, objects, animals or people that are provided with unique identifiers (UIDs) and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction. Internet of Things (IoT) is rapidly gaining momentum in the scenario of telecommunications. Conventional networks allow for interactivity and data exchange, but these networks have not been designed for the new features and functions of IoT devices. In this paper, an algorithm is proposed to share common recourse among Things, that is, between different types of smart appliances. . Purpose is to analyze deeper the cases separating the network and IoT layout, giving a deeper explanation of the purpose of the simulations, presenting all the information needed to utilize the exercises but also giving suggestion how to expand the exercises further. This implementation can be implemented effectively using package tracking software that includes IoT functions to control and simulate a smart home. IoT technology can be applied to many real life issues, such as: homework, treatment, campus, office, etc.


Author(s):  
Layse Nascimento ◽  
Joice Machado ◽  
Caio Rodrigues ◽  
Rhuan Ribeiro ◽  
Glauber Marques ◽  
...  

Nowadays, smart devices which can be controlled remotely by the Internet appear in the preference setting rather than the manual control to improve the standard of living. In this paper, a domotic system integrated into PV power generation has been developed on the Internet of Things (IoT). The system uses sensors for fire detection and monitoring of the temperature and relative air humidity. Based on real-time, the home automation off-grid system is developed so that makes the system cost-effective and portable.


2019 ◽  
Vol 01 (02) ◽  
pp. 31-39 ◽  
Author(s):  
Duraipandian M. ◽  
Vinothkanna R.

The paper proposing the cloud based internet of things for the smart connected objects, concentrates on developing a smart home utilizing the internet of things, by providing the embedded labeling for all the tangible things at home and enabling them to be connected through the internet. The smart home proposed in the paper concentrates on the steps in reducing the electricity consumption of the appliances at the home by converting them into the smart connected objects using the cloud based internet of things and also concentrates on protecting the house from the theft and the robbery. The proposed smart home by turning the ordinary tangible objects into the smart connected objects shows considerable improvement in the energy consumption and the security provision.


2021 ◽  
Vol 39 (4) ◽  
pp. 1-33
Author(s):  
Fulvio Corno ◽  
Luigi De Russis ◽  
Alberto Monge Roffarello

In the Internet of Things era, users are willing to personalize the joint behavior of their connected entities, i.e., smart devices and online service, by means of trigger-action rules such as “IF the entrance Nest security camera detects a movement, THEN blink the Philips Hue lamp in the kitchen.” Unfortunately, the spread of new supported technologies makes the number of possible combinations between triggers and actions continuously growing, thus motivating the need of assisting users in discovering new rules and functionality, e.g., through recommendation techniques. To this end, we present , a semantic Conversational Search and Recommendation (CSR) system able to suggest pertinent IF-THEN rules that can be easily deployed in different contexts starting from an abstract user’s need. By exploiting a conversational agent, the user can communicate her current personalization intention by specifying a set of functionality at a high level, e.g., to decrease the temperature of a room when she left it. Stemming from this input, implements a semantic recommendation process that takes into account ( a ) the current user’s intention , ( b ) the connected entities owned by the user, and ( c ) the user’s long-term preferences revealed by her profile. If not satisfied with the suggestions, then the user can converse with the system to provide further feedback, i.e., a short-term preference , thus allowing to provide refined recommendations that better align with the original intention. We evaluate by running different offline experiments with simulated users and real-world data. First, we test the recommendation process in different configurations, and we show that recommendation accuracy and similarity with target items increase as the interaction between the algorithm and the user proceeds. Then, we compare with other similar baseline recommender systems. Results are promising and demonstrate the effectiveness of in recommending IF-THEN rules that satisfy the current personalization intention of the user.


Author(s):  
Ghazi Hussein Shakah

<span>At the moment, all observed forms of communication are reduced either to a person-to-person scheme or person-to-device. But the Internet of Things (IoT) offers us a tremendous Internet future, in which will appear the communication type machine-machine (M2M). This makes it possible to integrate all communications into a common infrastructure, allowing not only to manage everything that is around us but also providing information about the state of these things. The purpose of this paper is to create the client part of the client-server system for remote control of home appliances using cloud services through commands entered using handwritten words. For this, we develop algorithms and methods for handwriting recognition using neural networks and implement a mobile application on the Android platform, which allows remote control of devices via cloud services based on commands entered using handwritten words. Anyway, this article will give a good understanding to other researchers who want to start their research on the IoT and will contribute to the effective accumulation of knowledge.</span>


Author(s):  
Tanweer Alam

In next-generation computing, the role of cloud, internet and smart devices will be capacious. Nowadays we all are familiar with the word smart. This word is used a number of times in our daily life. The Internet of Things (IoT) will produce remarkable different kinds of information from different resources. It can store big data in the cloud. The fog computing acts as an interface between cloud and IoT. The extension of fog in this framework works on physical things under IoT. The IoT devices are called fog nodes, they can have accessed anywhere within the range of the network. The blockchain is a novel approach to record the transactions in a sequence securely. Developing a new blockchains based middleware framework in the architecture of the Internet of Things is one of the critical issues of wireless networking where resolving such an issue would result in constant growth in the use and popularity of IoT. The proposed research creates a framework for providing the middleware framework in the internet of smart devices network for the internet of things using blockchains technology. Our main contribution links a new study that integrates blockchains to the Internet of things and provides communication security to the internet of smart devices.


2020 ◽  
Author(s):  
Tanweer Alam

<p>The fog computing is the emerging technology to compute, store, control and connecting smart devices with each other using cloud computing. The Internet of Things (IoT) is an architecture of uniquely identified interrelated physical things, these physical things are able to communicate with each other and can transmit and receive information. <a>This research presents a framework of the combination of the Internet of Things (IoT) and Fog computing. The blockchain is also the emerging technology that provides a hyper, distributed, public, authentic ledger to record the transactions. Blockchains technology is a secured technology that can be a boon for the next generation computing. The combination of fog, blockchains, and IoT creates a new opportunity in this area. In this research, the author presents a middleware framework based on the blockchain, fog, and IoT. The framework is implemented and tested. The results are found positive. </a></p>


2021 ◽  
pp. 1-16
Author(s):  
Abdelaziz A. Abdelhamid ◽  
Sultan R. Alotaibi

Internet of things (IoT) plays significant role in the fourth industrial revolution and attracts an increasing interest due to the rapid development of smart devices. IoT comprises factors of twofold. Firstly, a set of things (i.e., appliances, devices, vehicles, etc.) connected together via network. Secondly, human-device interaction to communicate with these things. Speech is the most natural methodology of interaction that can enrich user experience. In this paper, we propose a novel and effective approach for building customized voice interaction for controlling smart devices in IoT environments (i.e., Smart home). The proposed approach is based on extracting customized tiny decoding graph from a large graph constructed using weighted finite sates transducers. Experimental results showed that tiny decoding graphs are very efficient in terms of computational resources and recognition accuracy in clean and noisy conditions. To emphasize the effectiveness of the proposed approach, the standard Resources Management (RM1) dataset was employed and promising results were achieved when compared with four competitive approaches.


Sign in / Sign up

Export Citation Format

Share Document