scholarly journals IDENTIFICATION OF WHEAT GERMPLASM RESISTANT TO LEAF, STRIPE AND STEM RUST USING MOLECULAR MARKERS

THE BULLETIN ◽  
2020 ◽  
Vol 2 (384) ◽  
pp. 45-52
Author(s):  
A. M. Kokhmetova ◽  
◽  
M. N. Atishova ◽  
K. Galymbek ◽  
◽  
...  
Crop Science ◽  
1993 ◽  
Vol 33 (1) ◽  
pp. 220-220 ◽  
Author(s):  
B. Friebe ◽  
B. S. Gill ◽  
T. S. Cox ◽  
F. J. Zeller

Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 387-392 ◽  
Author(s):  
Mohsen Mohammadi ◽  
Davoud Torkamaneh ◽  
Mehran Patpour

Following emergence of Ug99, the new virulent race of Puccinia graminis f. sp. tritici in Africa, a global effort for identification and utilization of new sources of Ug99-resistant germplasm has been undertaken. In this study, we conducted replicated experiments to evaluate the resistance of Iranian wheat germplasm to the TTKSK lineage of the Ug99 race of P. graminis f. sp. tritici. We also evaluated for presence of stem rust resistance genes (i.e., Sr2, Sr24, Sr26, Sr38, Sr39, Sr31, and Sr1RSAmigo) in wheat cultivars and breeding lines widely cultivated in Iran. Our phenotyping data revealed high levels of susceptibility to Ug99 in Iranian bread wheat germplasm. Our genotyping data revealed that Iranian cultivars do not carry Sr24, Sr26, or Sr1RSAmigo. Only a few salt-tolerant cultivars and breeding lines tested positively for Sr2, Sr31, Sr38, or Sr39 markers. In conclusion, the genetic basis for resistance to Ug99 in Iranian wheat cultivars was found to be vulnerable. Acquiring knowledge about existing resistance genes and haplotypes in wheat cultivars and breeding lines will help breeders, cereal pathologists, and policy makers to select and pyramid effective stem rust resistance genes.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4882 ◽  
Author(s):  
Xiaofeng Xu ◽  
Depeng Yuan ◽  
Dandan Li ◽  
Yue Gao ◽  
Ziyuan Wang ◽  
...  

Wheat stem rust caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn. (Pgt), is a major disease that has been effectively controlled using resistance genes. The appearance and spread of Pgt races such as Ug99, TKTTF, and TTTTF, which are virulent to most stem rust-resistant genes currently deployed in wheat breeding programs, renewed the interest in breeding cultivars resistant to wheat stem rust. It is therefore important to investigate the levels of resistance or vulnerability of wheat cultivars to Pgt races. Resistance to Pgt races 21C3CTHQM, 34MKGQM, and 34C3RTGQM was evaluated in 136 Chinese wheat cultivars at the seedling stage. A total of 124 cultivars (91.2%) were resistant to the three races. Resistance genes Sr2, Sr24, Sr25, Sr26, Sr31, and Sr38 were analyzed using molecular markers closely linked to them, and 63 of the 136 wheat cultivars carried at least one of these genes: 21, 25, and 28 wheat cultivars likely carried Sr2, Sr31, and Sr38, respectively. Cultivars “Kehan 3” and “Jimai 22” likely carried Sr25. None of the cultivars carried Sr24 or Sr26. These cultivars with known stem rust resistance genes provide valuable genetic material for breeding resistant wheat cultivars.


Crop Science ◽  
2013 ◽  
Vol 53 (3) ◽  
pp. 755-764 ◽  
Author(s):  
Amy N. Bernardo ◽  
Robert L. Bowden ◽  
Matthew N. Rouse ◽  
Maria S. Newcomb ◽  
David S. Marshall ◽  
...  

2011 ◽  
Vol 123 (8) ◽  
pp. 1257-1268 ◽  
Author(s):  
Long-Xi Yu ◽  
Aaron Lorenz ◽  
Jessica Rutkoski ◽  
Ravi P. Singh ◽  
Sridhar Bhavani ◽  
...  

2016 ◽  
Vol 24 (1) ◽  
pp. 25
Author(s):  
D Worku ◽  
T Zerihun ◽  
K Daniel ◽  
Z Habtemariam ◽  
A Dawit ◽  
...  

2013 ◽  
Vol 04 (04) ◽  
pp. 767-773 ◽  
Author(s):  
Fredrick O. Amulaka ◽  
Joyce N. Maling’a ◽  
Mehmet Cakir ◽  
Richard M. S. Mulwa

Sign in / Sign up

Export Citation Format

Share Document