scholarly journals Variable mode-mixity during fatigue cycles – crack tip parameters determined from displacement fields measured by digital image correlation

2017 ◽  
Vol 11 (41) ◽  
pp. 314-322 ◽  
Author(s):  
Michael Vormwald ◽  
Yigiter Hos ◽  
José L.F. Freire ◽  
Giancarlo L.G. Gonzáles ◽  
Jorge G. Díaz
Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 400 ◽  
Author(s):  
Ivo Campione ◽  
Tommaso Maria Brugo ◽  
Giangiacomo Minak ◽  
Jelena Janković Tomić ◽  
Nebojša Bogojević ◽  
...  

This work investigates the fracture behavior of maraging steel specimens manufactured by the selective laser sintering (SLS) technology, in which a crack-like notch (sharp notch) was directly produced during the additive manufacturing (AM) process. For the evaluation of the fracture toughness, the inclined asymmetrical semi-circular specimen subjected to three points loading (IASCB) was used, allowing to cover a wide variety of Mode I and II combinations. The effectiveness of manufacturing crack-like notches via the SLS technique in metals was evaluated by comparing the obtained experimental results with the ones obtained with pre-cracks induced by fatigue loading. The investigation was carried out by using the digital image correlation (DIC) technique, that allowed the evaluation of the full displacement fields around the crack tip. The displacement field was then used to compute the stress intensity factors (SIFs) for various combinations of Mode I and II, via a fitting technique which relies on the Williams’ model for the displacement. The SIFs obtained in this way were compared to the results obtained with the conventional critical load method. The results showed that the discrepancy between the two methods reduces by ranging from Mode I to Mode II loading condition. Finally, the experimental SIFs obtained by the two methods were described by the mixed mode local stress criterium.


2019 ◽  
Vol 138 ◽  
pp. 103158 ◽  
Author(s):  
Mincong Liu ◽  
Jingyi Guo ◽  
Zhilong Li ◽  
Chung-Yuen Hui ◽  
Alan T. Zehnder

Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 504
Author(s):  
Jie Zhang ◽  
Cedric Kiekens ◽  
Stijn Hertelé ◽  
Wim De Waele

The trajectory of fatigue crack growth is influenced by many parameters and can be irregular due to changes in stress distribution or in material properties as the crack progresses. Images of the surface of a standardized test specimen can be used to visualize the crack trajectory in a non-destructive way. Accurately identifying the location of the crack tip, however, is challenging and requires devoted image postprocessing. In this respect, digital image correlation allows to obtain full field displacement and strain fields by analysing changes of digital images of the same sample at different stages of loading. This information can be used for the purpose of crack tip tracking. This paper presents a combined experimental-numerical study of detection and prediction of fatigue crack propagation path by means of digital image correlation (DIC) and the extended finite element method (X-FEM). Experimental validation and analyses are carried out on a modified C(T) specimen in which a curved crack trajectory is triggered by introducing mixed-mode (tension + shear) loading. The developed tools are used for validating an automated framework for crack propagation prediction.


2015 ◽  
Vol 8 (3) ◽  
pp. 323-340 ◽  
Author(s):  
A. H. A. SANTOS ◽  
R. L. S. PITANGUEIRA ◽  
G. O. RIBEIRO ◽  
R. B. CALDAS

Size effect is an important issue in concrete structures bearing in mind that it can influence many aspects of analysis such as strength, brittleness and structural ductility, fracture toughness and fracture energy, among others. Further this, ever more new methods are being developed to evaluate displacement fields in structures. In this paper an experimental evaluation of the size effect is performed applying Digital Image Correlation (DIC) technique to measure displacements on the surface of beams. Three point bending tests were performed on three different size concrete beams with a notch at the midspan. The results allow a better understanding of the size effect and demonstrate the efficiency of Digital Image Correlation to obtain measures of displacements.


Sign in / Sign up

Export Citation Format

Share Document