scholarly journals ASYMPTOTICS OF CRITICAL LOADS OF A COMPRESSED NARROW ELASTIC PLATE WITH INTERNAL STRESSES

2021 ◽  
Vol 83 (2) ◽  
pp. 227-234
Author(s):  
I.M. Peshkhoev

The problem of the asymptotic solution of a modified system of nonlinear Karman equilibrium equations for a longitudinally compressed elongated elastic rectangular plate with internal stresses lying on an elastic base is considered. Internal stresses can be caused by continuously distributed edge dislocations and wedge disclinations, or other sources. The compressive pressure is applied parallel to the long sides of the plate to the two short edges. The boundary conditions are considered: the long edges of the plate are free from loads, and the short edges are freely pinched or movably hinged. A small parameter is introduced, equal to the ratio of the short side of the plate to the long side. The solution of the system – the compressive load, the deflection function, and the stress function – is sought in the form of series expansions over a small parameter. The system of Karman equations with dimensionless variables is reduced to an infinite system of boundary value problems for ordinary differential equations with respect to the coefficients of asymptotic expansions for the critical load, deflection, and stress function. In this case, to meet the boundary conditions, the boundary layer functions are additionally introduced, which are concentrated near the fixed edges and disappear when moving away from them. Boundary value problems for determining the functions of the boundary layer are constructed. It is shown that the main terms of the small parameter expansions for the critical load and deflection are determined from the equilibrium equation of a compressed beam on an elastic base with the boundary conditions of free pinching or movable hinge support of the ends. In this case, the main term of the expansion into a series of the stress function has a fourth order of smallness in the parameter of the relative width of the plate.

2021 ◽  
pp. 108128652199641
Author(s):  
Mikhail D Kovalenko ◽  
Irina V Menshova ◽  
Alexander P Kerzhaev ◽  
Guangming Yu

We construct exact solutions of two inhomogeneous boundary value problems in the theory of elasticity for a half-strip with free long sides in the form of series in Papkovich–Fadle eigenfunctions: (a) the half-strip end is free and (b) the half-strip end is firmly clamped. Initially, we construct a solution of the inhomogeneous problem for an infinite strip. Subsequently, the corresponding solutions for a half-strip are added to this solution, whereby the boundary conditions at the end are satisfied. The Papkovich orthogonality relation is used to solve the inhomogeneous problem in a strip.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ji Lin ◽  
Yuhui Zhang ◽  
Chein-Shan Liu

AbstractFor nonlinear third-order three-point boundary value problems (BVPs), we develop two algorithms to find solutions, which automatically satisfy the specified three-point boundary conditions. We construct a boundary shape function (BSF), which is designed to automatically satisfy the boundary conditions and can be employed to develop new algorithms by assigning two different roles of free function in the BSF. In the first algorithm, we let the free functions be complete functions and the BSFs be the new bases of the solution, which not only satisfy the boundary conditions automatically, but also can be used to find solution by a collocation technique. In the second algorithm, we let the BSF be the solution of the BVP and the free function be another new variable, such that we can transform the BVP to a corresponding initial value problem for the new variable, whose initial conditions are given arbitrarily and terminal values are determined by iterations; hence, we can quickly find very accurate solution of nonlinear third-order three-point BVP through a few iterations. Numerical examples confirm the performance of the new algorithms.


2020 ◽  
Vol 28 (2) ◽  
pp. 237-241
Author(s):  
Biljana M. Vojvodic ◽  
Vladimir M. Vladicic

AbstractThis paper deals with non-self-adjoint differential operators with two constant delays generated by {-y^{\prime\prime}+q_{1}(x)y(x-\tau_{1})+(-1)^{i}q_{2}(x)y(x-\tau_{2})}, where {\frac{\pi}{3}\leq\tau_{2}<\frac{\pi}{2}<2\tau_{2}\leq\tau_{1}<\pi} and potentials {q_{j}} are real-valued functions, {q_{j}\in L^{2}[0,\pi]}. We will prove that the delays and the potentials are uniquely determined from the spectra of four boundary value problems: two of them under boundary conditions {y(0)=y(\pi)=0} and the remaining two under boundary conditions {y(0)=y^{\prime}(\pi)=0}.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 130
Author(s):  
Suphawat Asawasamrit ◽  
Yasintorn Thadang ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

In the present article we study existence and uniqueness results for a new class of boundary value problems consisting by non-instantaneous impulses and Caputo fractional derivative of a function with respect to another function, supplemented with Riemann–Stieltjes fractional integral boundary conditions. The existence of a unique solution is obtained via Banach’s contraction mapping principle, while an existence result is established by using Leray–Schauder nonlinear alternative. Examples illustrating the main results are also constructed.


Sign in / Sign up

Export Citation Format

Share Document