Analyzing the impact of different action primitives in designing high-level human activity recognition systems

2013 ◽  
Vol 5 (5) ◽  
pp. 443-461 ◽  
Author(s):  
Atif Manzoor ◽  
Hong-Linh Truong ◽  
Alberto Calatroni ◽  
Daniel Roggen ◽  
Mélanie Bouroche ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 5026 ◽  
Author(s):  
Akbar Dehghani ◽  
Omid Sarbishei ◽  
Tristan Glatard ◽  
Emad Shihab

The sliding window technique is widely used to segment inertial sensor signals, i.e., accelerometers and gyroscopes, for activity recognition. In this technique, the sensor signals are partitioned into fix sized time windows which can be of two types: (1) non-overlapping windows, in which time windows do not intersect, and (2) overlapping windows, in which they do. There is a generalized idea about the positive impact of using overlapping sliding windows on the performance of recognition systems in Human Activity Recognition. In this paper, we analyze the impact of overlapping sliding windows on the performance of Human Activity Recognition systems with different evaluation techniques, namely, subject-dependent cross validation and subject-independent cross validation. Our results show that the performance improvements regarding overlapping windowing reported in the literature seem to be associated with the underlying limitations of subject-dependent cross validation. Furthermore, we do not observe any performance gain from the use of such technique in conjunction with subject-independent cross validation. We conclude that when using subject-independent cross validation, non-overlapping sliding windows reach the same performance as sliding windows. This result has significant implications on the resource usage for training the human activity recognition systems.


Sensors ◽  
2012 ◽  
Vol 12 (6) ◽  
pp. 8039-8054 ◽  
Author(s):  
Oresti Banos ◽  
Miguel Damas ◽  
Hector Pomares ◽  
Ignacio Rojas

Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3434 ◽  
Author(s):  
Nattaya Mairittha ◽  
Tittaya Mairittha ◽  
Sozo Inoue

Labeling activity data is a central part of the design and evaluation of human activity recognition systems. The performance of the systems greatly depends on the quantity and “quality” of annotations; therefore, it is inevitable to rely on users and to keep them motivated to provide activity labels. While mobile and embedded devices are increasingly using deep learning models to infer user context, we propose to exploit on-device deep learning inference using a long short-term memory (LSTM)-based method to alleviate the labeling effort and ground truth data collection in activity recognition systems using smartphone sensors. The novel idea behind this is that estimated activities are used as feedback for motivating users to collect accurate activity labels. To enable us to perform evaluations, we conduct the experiments with two conditional methods. We compare the proposed method showing estimated activities using on-device deep learning inference with the traditional method showing sentences without estimated activities through smartphone notifications. By evaluating with the dataset gathered, the results show our proposed method has improvements in both data quality (i.e., the performance of a classification model) and data quantity (i.e., the number of data collected) that reflect our method could improve activity data collection, which can enhance human activity recognition systems. We discuss the results, limitations, challenges, and implications for on-device deep learning inference that support activity data collection. Also, we publish the preliminary dataset collected to the research community for activity recognition.


Information ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 203 ◽  
Author(s):  
Jun Long ◽  
Wuqing Sun ◽  
Zhan Yang ◽  
Osolo Ian Raymond

Human activity recognition (HAR) using deep neural networks has become a hot topic in human–computer interaction. Machines can effectively identify human naturalistic activities by learning from a large collection of sensor data. Activity recognition is not only an interesting research problem but also has many real-world practical applications. Based on the success of residual networks in achieving a high level of aesthetic representation of automatic learning, we propose a novel asymmetric residual network, named ARN. ARN is implemented using two identical path frameworks consisting of (1) a short time window, which is used to capture spatial features, and (2) a long time window, which is used to capture fine temporal features. The long time window path can be made very lightweight by reducing its channel capacity, while still being able to learn useful temporal representations for activity recognition. In this paper, we mainly focus on proposing a new model to improve the accuracy of HAR. In order to demonstrate the effectiveness of the ARN model, we carried out extensive experiments on benchmark datasets (i.e., OPPORTUNITY, UniMiB-SHAR) and compared the results with some conventional and state-of-the-art learning-based methods. We discuss the influence of networks parameters on performance to provide insights about its optimization. Results from our experiments show that ARN is effective in recognizing human activities via wearable datasets.


2013 ◽  
Vol 22 (06) ◽  
pp. 1350030 ◽  
Author(s):  
ATHANASIOS TSITSOULIS ◽  
NIKOLAOS BOURBAKIS

The development of vision-based human activity recognition and analysis systems has been a matter of great interest to both the research community and practitioners during the last 20 years. Traditional methods that require a human operator watching raw video streams are nowadays deemed as at least ineffective and expensive. New, smart solutions in automatic surveillance and monitoring have emerged, propelled by significant technological advances in the fields of image processing, artificial intelligence, electronics and optics, embedded computing and networking, molding the future of several applications that can benefit from them, like security and healthcare. The main motivation behind it is to exploit the highly informative visual data captured by cameras and perform high-level inference in an automatic, ubiquitous and unobtrusive manner, so as to aid human operators, or even replace them. This survey attempts to comprehensively review the current research and development on vision-based human activity recognition. Synopses from various methodologies are presented in an effort to garner the advantages and shortcomings of the most recent state-of-the-art technologies. Also a first-level self-evaluation of methodologies is also proposed, which incorporates a set of significant features that best describe the most important aspects of each methodology in terms of operation, performance and others and weighted by their importance. The purpose of this study is to serve as a reference for further research and evaluation to raise thoughts and discussions for future improvements of each methodology towards maturity and usefulness.


Sign in / Sign up

Export Citation Format

Share Document