Predicting Water Availability of the Regulated Mekong River Basin Using Satellite Observations and a Physical Model

2017 ◽  
Vol 14 (3) ◽  
pp. 39-48 ◽  
Author(s):  
Faisal Hossain ◽  
Safat Sikder ◽  
Nishan Biswas ◽  
Matthew Bonnema ◽  
Hyongki Lee ◽  
...  
2018 ◽  
Vol 564 ◽  
pp. 559-573 ◽  
Author(s):  
Ibrahim Nourein Mohammed ◽  
John D. Bolten ◽  
Raghavan Srinivasan ◽  
Venkat Lakshmi

2021 ◽  
Author(s):  
Dung Trung Vu ◽  
Thanh Duc Dang ◽  
Stefano Galelli ◽  
Faisal Hossain

Abstract. The current situation in the Lancang–Mekong River Basin is emblematic of the issues faced by many transboundary basins around the world: riparian countries prioritize national water-energy policies and provide limited information on how major infrastructures are operated. In turn, such infrastructures and their management become a source of controversy. Here, we turn our attention to the Upper Mekong River, or Lancang, where a system of eleven mainstream dams controls about 55 % of the annual flow to Northern Thailand and Laos. Yet, assessing their actual impact is a challenging task because of the chronic lack of data on reservoir storage and dam release decisions. To overcome this challenge, we focus on the ten largest reservoirs and leverage satellite observations to infer 13-year time series of monthly storage variations. Specifically, we use area-storage curves (derived from a Digital Elevation Model) and time series of water surface area, which we estimate from Landsat images through a novel algorithm that removes the effects of clouds and other disturbances. We also use satellite radar altimetry data (Jason) to validate the results obtained from satellite imagery. Our results describe the evolution of the hydropower system and highlight the pivotal role played by Xiaowan and Nuozhadu reservoirs, which make up to ~85 % of the total system's storage in the Lancang River Basin. We show that these two reservoirs were filled in only two years, and that their operations did not change in response to the drought that occurred in the region in 2019–2020. Deciphering these operating strategies could help enrich existing monitoring tools and hydrological models, thereby supporting riparian countries in the design of more cooperative water-energy policies.


Author(s):  
S. Liu ◽  
W. Ding ◽  
C. Liu ◽  
L. Liu ◽  
S. Bajracharya ◽  
...  

Abstract. According to Liu et al. (2014), borrowing, substituting and generating (BSG) are the main methods people used to acquire the discharge at ungauged stations. Two of the substitution (modelling and disaggregation) methods in combination with the borrowing idea are compared for simulating discharge for the Upper Salween and Mekong River Basin (USMRB). It is seen that with a simple borrowing/ disaggregating method, the Nash-Sutcliffe Efficiency (NSE) can reach 0.82. The similarity in the seasonal variation pattern is a more important requirement to identify if the two stations are to be considered as having hydrological similarity. From the experience obtained for the USMRB, an upstream station with shorter geographical distance may be more in hydrological similarity than a station in the far downstream. The NSE is quite low when borrowing occurs within the low altitude downstream region. The efficiency will be decreased when we borrow information from several stations which may be not in hydrological similarity.


2021 ◽  
Vol 765 ◽  
pp. 144494
Author(s):  
He Chen ◽  
Junguo Liu ◽  
Ganquan Mao ◽  
Zifeng Wang ◽  
Zhenzhong Zeng ◽  
...  

2021 ◽  
Vol 36 ◽  
pp. 100873
Author(s):  
Yishan Li ◽  
Hui Lu ◽  
Kun Yang ◽  
Wei Wang ◽  
Qiuhong Tang ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 303
Author(s):  
Shi Hu ◽  
Xingguo Mo

Using the Global Land Surface Satellite (GLASS) leaf area index (LAI), the actual evapotranspiration (ETa) and available water resources in the Mekong River Basin were estimated with the Remote Sensing-Based Vegetation Interface Processes Model (VIP-RS). The relative contributions of climate variables and vegetation greening to ETa were estimated with numerical experiments. The results show that the average ETa in the entire basin increased at a rate of 1.16 mm year−2 from 1980 to 2012 (36.7% of the area met the 95% significance level). Vegetation greening contributed 54.1% of the annual ETa trend, slightly higher than that of climate change. The contributions of air temperature, precipitation and the LAI were positive, whereas contributions of solar radiation and vapor pressure were negative. The effects of water supply and energy availability were equivalent on the variation of ETa throughout most of the basin, except the upper reach and downstream Mekong Delta. In the upper reach, climate warming played a critical role in the ETa variability, while the warming effect was offset by reduced solar radiation in the Mekong Delta (an energy-limited region). For the entire basin, the available water resources showed an increasing trend due to intensified precipitation; however, in downstream areas, additional pressure on available water resources is exerted due to cropland expansion with enhanced agricultural water consumption. The results provide scientific basis for practices of integrated catchment management and water resources allocation.


Sign in / Sign up

Export Citation Format

Share Document