Global existence, asymptotic behavior and uniform attractor for a non-autonomous Timoshenko system of type III with weak damping

2020 ◽  
pp. 1-25
Author(s):  
Yuming Qin ◽  
Ye Sheng

In this paper, we investigate one-dimensional thermoelastic system of Timoshenko type III with double memory dampings. At first we give the global existence of solutions by using semigroup theory. Then we can prove the energy decay of solutions by constructing a series of Lyapunov functionals and obtain the existence of absorbing ball. Finally, we prove the asymptotic compactness by using uniform contractive functions and obtain the existence of uniform attractor.


Mathematica ◽  
2021 ◽  
Vol 63 (86) (1) ◽  
pp. 32-46
Author(s):  
Benguessoum Aissa

We consider, in a bounded domain, a certain wave equation with a weak internal time-varying delay term. Under appropriate conditions, we prove global existence of solutions by the Faedo-Galerkin method and establish a decay rate estimate for the energy using the multiplier method.



Author(s):  
Anca-Voichita Matioc ◽  
Bogdan-Vasile Matioc

AbstractIn this paper we establish the well-posedness of the Muskat problem with surface tension and equal viscosities in the subcritical Sobolev spaces $$W^s_p(\mathbb {R})$$ W p s ( R ) , where $${p\in (1,2]}$$ p ∈ ( 1 , 2 ] and $${s\in (1+1/p,2)}$$ s ∈ ( 1 + 1 / p , 2 ) . This is achieved by showing that the mathematical model can be formulated as a quasilinear parabolic evolution problem in $$W^{\overline{s}-2}_p(\mathbb {R})$$ W p s ¯ - 2 ( R ) , where $${\overline{s}\in (1+1/p,s)}$$ s ¯ ∈ ( 1 + 1 / p , s ) . Moreover, we prove that the solutions become instantly smooth and we provide a criterion for the global existence of solutions.



2016 ◽  
Vol 13 (02) ◽  
pp. 381-415
Author(s):  
Debora Amadori ◽  
Paolo Baiti ◽  
Andrea Corli ◽  
Edda Dal Santo

In this paper we study the flow of an inviscid fluid composed by three different phases. The model is a simple hyperbolic system of three conservation laws, in Lagrangian coordinates, where the phase interfaces are stationary. Our main result concerns the global existence of weak entropic solutions to the initial-value problem for large initial data.



2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Xiaoqiang Dai

Abstract In this paper, we study the Cauchy problem of multidimensional generalized double dispersion equation. To prove the global existence of solutions, we introduce some new methods and ideas, and fill some gaps in the established results.



Sign in / Sign up

Export Citation Format

Share Document