scholarly journals Membranes with thin and heavy inclusions: Asymptotics of spectra

2021 ◽  
pp. 1-29
Author(s):  
Yuriy Golovaty

We study the asymptotic behaviour of eigenvalues of 2D vibrating systems with mass density perturbed in a vicinity of closed curves. The threshold case in which the resonance frequencies of the membrane and the frequencies of thin inclusion coincide is investigated. The perturbed eigenvalue problem can be realized as a family of self-adjoint operators acting on varying Hilbert spaces. However the so-called limit operator is non-self-adjoint and possesses the Jordan chains of length 2. Apart from the lack of self-adjointness, the operator has non-compact resolvent. As a consequence, its spectrum has a complicated structure, for instance, the spectrum contains a countable set of eigenvalues with infinite multiplicity. The complete asymptotic analysis of eigenvalues has been carried out.

1981 ◽  
Vol 100 (1) ◽  
pp. 213-219 ◽  
Author(s):  
David E. Edmunds ◽  
Hans Triebel

Author(s):  
Yohei Magara ◽  
Kazuyuki Yamaguchi ◽  
Haruo Miura ◽  
Naohiko Takahashi ◽  
Mitsuhiro Narita

In designing an impeller for centrifugal compressors, it is important to predict the natural frequencies accurately in order to avoid resonance caused by pressure fluctuations due to rotorstator interaction. However, the natural frequencies of an impeller change under high-density fluid conditions. The natural frequencies of pump impellers are lower in water than in air because of the added mass effect of water, and in high-pressure compressors the mass density of the discharge gas can be about one-third that of water. So to predict the natural frequencies of centrifugal compressor impellers, the influence of the gas must be considered. We previously found in the non-rotating case that some natural frequencies of an impeller decreased under high-density gas conditions but others increased and that the increase of natural frequencies is caused by fluid-structure interaction, not only the added mass effect but also effect of the stiffness of the gas. In order to develop a method for predicting natural frequencies of centrifugal compressor impellers for high-density gas applications, this paper presents experimental results obtained using a variable-speed centrifugal compressor with vaned diffusers. The maximum mass density of its discharge gas is approximately 300 kg/m3. The vibration stress on an impeller when the compressor was speeding up or slowing down was measured by strain gages, and the natural frequencies were determined by resonance frequencies. The results indicate that for high-density centrifugal compressors, some natural frequencies of an impeller increased in high-density gas. To predict this behavior, we developed a calculation method based on the theoretical analysis of a rotating disc. Its predictions are in good agreement with experimental results.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Yohei Magara ◽  
Kazuyuki Yamaguchi ◽  
Haruo Miura ◽  
Naohiko Takahashi ◽  
Mitsuhiro Narita

In designing an impeller for centrifugal compressors, it is important to predict the natural frequencies accurately in order to avoid resonance caused by pressure fluctuations due to rotor-stator interaction. However, the natural frequencies of an impeller change under high-density fluid conditions. The natural frequencies of pump impellers are lower in water than in air because of the added mass effect of water, and in high-pressure compressors the mass density of the discharge gas can be about one-third that of water. So to predict the natural frequencies of centrifugal compressor impellers, the influence of the gas must be considered. We previously found in the nonrotating case that some natural frequencies of an impeller decreased under high-density gas conditions but others increased and that the increase of natural frequencies is caused by fluid-structure interaction, not only the added mass effect but also effect of the stiffness of the gas. In order to develop a method for predicting natural frequencies of centrifugal compressor impellers for high-density gas applications, this paper presents experimental results obtained using a variable-speed centrifugal compressor with vaned diffusers. The maximum mass density of its discharge gas is approximately 300 kg/m3. The vibration stress on an impeller when the compressor was speeding up or slowing down was measured by strain gauges, and the natural frequencies were determined by resonance frequencies. The results indicate that for high-density centrifugal compressors, some natural frequencies of an impeller increased in high-density gas. To predict this behavior, we developed a calculation method based on the theoretical analysis of a rotating disk. Its predictions are in good agreement with experimental results.


2019 ◽  
Vol 31 (04) ◽  
pp. 1950013 ◽  
Author(s):  
Valter Moretti ◽  
Marco Oppio

As earlier conjectured by several authors and much later established by Solèr, from the lattice-theory point of view, Quantum Mechanics may be formulated in real, complex or quaternionic Hilbert spaces only. On the other hand, no quantum systems seem to exist that are naturally described in a real or quaternionic Hilbert space. In a previous paper [23], we showed that any quantum system which is elementary from the viewpoint of the Poincaré symmetry group and it is initially described in a real Hilbert space, it can also be described within the standard complex Hilbert space framework. This complex description is unique and more precise than the real one as, for instance, in the complex description, all self-adjoint operators represent observables defined by the symmetry group. The complex picture fulfils the thesis of Solér’s theorem and permits the standard formulation of the quantum Noether’s theorem. The present work is devoted to investigate the remaining case, namely, the possibility of a description of a relativistic elementary quantum system in a quaternionic Hilbert space. Everything is done exploiting recent results of the quaternionic spectral theory that were independently developed. In the initial part of this work, we extend some results of group representation theory and von Neumann algebra theory from the real and complex cases to the quaternionic Hilbert space case. We prove the double commutant theorem also for quaternionic von Neumann algebras (whose proof requires a different procedure with respect to the real and complex cases) and we extend to the quaternionic case a result established in the previous paper concerning the classification of irreducible von Neumann algebras into three categories. In the second part of the paper, we consider an elementary relativistic system within Wigner’s approach defined as a locally-faithful irreducible strongly-continuous unitary representation of the Poincaré group in a quaternionic Hilbert space. We prove that, if the squared-mass operator is non-negative, the system admits a natural, Poincaré invariant and unique up to sign, complex structure which commutes with the whole algebra of observables generated by the representation itself. This complex structure leads to a physically equivalent reformulation of the theory in a complex Hilbert space. Within this complex formulation, differently from what happens in the quaternionic one, all self-adjoint operators represent observables in agreement with Solèr’s thesis, the standard quantum version of Noether theorem may be formulated and the notion of composite system may be given in terms of tensor product of elementary systems. In the third part of the paper, we focus on the physical hypotheses adopted to define a quantum elementary relativistic system relaxing them on the one hand, and making our model physically more general on the other hand. We use a physically more accurate notion of irreducibility regarding the algebra of observables only, we describe the symmetries in terms of automorphisms of the restricted lattice of elementary propositions of the quantum system and we adopt a notion of continuity referred to the states viewed as probability measures on the elementary propositions. Also in this case, the final result proves that there exists a unique (up to sign) Poincaré invariant complex structure making the theory complex and completely fitting into Solèr’s picture. The overall conclusion is that relativistic elementary systems are naturally and better described in complex Hilbert spaces even if starting from a real or quaternionic Hilbert space formulation and this complex description is uniquely fixed by physics.


2005 ◽  
Vol 77 (4) ◽  
pp. 589-594 ◽  
Author(s):  
Paolo Piccione ◽  
Daniel V. Tausk

We prove that any countable family of Lagrangian subspaces of a symplectic Hilbert space admits a common complementary Lagrangian. The proof of this puzzling result, which is not totally elementary also in the finite dimensional case, is obtained as an application of the spectral theorem for unbounded self-adjoint operators.


2006 ◽  
Vol 18 (01) ◽  
pp. 79-117 ◽  
Author(s):  
GAETANO FIORE

We show that the complicated ⋆-structure characterizing for positive q the Uqso(N)-covariant differential calculus on the noncommutative manifold [Formula: see text] boils down to similarity transformations involving the ribbon element of a central extension of Uqso(N) and its formal square root ṽ. Subspaces of the spaces of functions and of p-forms on [Formula: see text] are made into Hilbert spaces by introducing non-conventional "weights" in the integrals defining the corresponding scalar products, namely suitable positive-definite q-pseudodifferential operators ṽ′±1 realizing the action of ṽ±1; this serves to make the partial q-derivatives anti-hermitean and the exterior coderivative equal to the hermitean conjugate of the exterior derivative, as usual. There is a residual freedom in the choice of the weight m(r) along the "radial coordinate" r. Unless we choose a constant m, then the square-integrables functions/forms must fulfill an additional condition, namely, their analytic continuations to the complex r plane can have poles only on the sites of some special lattice. Among the functions naturally selected by this condition there are q-special functions with "quantized" free parameters.


Sign in / Sign up

Export Citation Format

Share Document