Non-Self-Embedding Grammars and Descriptional Complexity

2021 ◽  
Vol 180 (1-2) ◽  
pp. 103-122
Author(s):  
Giovanni Pighizzini ◽  
Luca Prigioniero

Non-self-embedding grammars are a subclass of context-free grammars which only generate regular languages. The size costs of the conversion of non-self-embedding grammars into equivalent finite automata are studied, by proving optimal bounds for the number of states of nondeterministic and deterministic automata equivalent to given non-self-embedding grammars. In particular, each non-self-embedding grammar of size s can be converted into an equivalent nondeterministic automaton which has an exponential size in s and into an equivalent deterministic automaton which has a double exponential size in s. These costs are shown to be optimal. Moreover, they do not change if the larger class of quasi-non-self-embedding grammars, which still generate only regular languages, is considered. In the case of letter bounded languages, the cost of the conversion of non-self-embedding grammars and quasi-non-self-embedding grammars into deterministic automata reduces to an exponential of a polynomial in s.

Author(s):  
Bruno Guillon ◽  
Giovanni Pighizzini ◽  
Luca Prigioniero

Non-self-embedding grammars are a restriction of context-free grammars which does not allow to describe recursive structures and, hence, which characterizes only the class of regular languages. A double exponential gap in size from non-self-embedding grammars to deterministic finite automata is known. The same size gap is also known from constant-height pushdown automata and [Formula: see text]-limited automata to deterministic finite automata. Constant-height pushdown automata and [Formula: see text]-limited automata are compared with non-self-embedding grammars. It is proved that non-self-embedding grammars and constant-height pushdown automata are polynomially related in size. Furthermore, a polynomial size simulation by [Formula: see text]-limited automata is presented. However, the converse transformation is proved to cost exponential. Finally, a different simulation shows that also the conversion of deterministic constant-height pushdown automata into deterministic [Formula: see text]-limited automata costs polynomial.


2014 ◽  
Vol 25 (07) ◽  
pp. 897-916 ◽  
Author(s):  
GIOVANNI PIGHIZZINI ◽  
ANDREA PISONI

Limited automata are one-tape Turing machines that are allowed to rewrite the content of any tape cell only in the first d visits, for a fixed constant d. In the case d = 1, namely, when a rewriting is possible only during the first visit to a cell, these models have the same power of finite state automata. We prove state upper and lower bounds for the conversion of 1-limited automata into finite state automata. In particular, we prove a double exponential state gap between nondeterministic 1-limited automata and one-way deterministic finite automata. The gap reduces to a single exponential in the case of deterministic 1-limited automata. This also implies an exponential state gap between nondeterministic and deterministic 1-limited automata. Another consequence is that 1-limited automata can have less states than equivalent two-way nondeterministic finite automata. We show that this is true even if we restrict to the case of the one-letter input alphabet. For each d ≥ 2, d-limited automata are known to characterize the class of context-free languages. Using the Chomsky-Schützenberger representation for contextfree languages, we present a new conversion from context-free languages into 2-limited automata.


2021 ◽  
Vol 58 (4) ◽  
pp. 263-279
Author(s):  
Henning Bordihn ◽  
György Vaszil

AbstractWe study the concept of reversibility in connection with parallel communicating systems of finite automata (PCFA in short). We define the notion of reversibility in the case of PCFA (also covering the non-deterministic case) and discuss the relationship of the reversibility of the systems and the reversibility of its components. We show that a system can be reversible with non-reversible components, and the other way around, the reversibility of the components does not necessarily imply the reversibility of the system as a whole. We also investigate the computational power of deterministic centralized reversible PCFA. We show that these very simple types of PCFA (returning or non-returning) can recognize regular languages which cannot be accepted by reversible (deterministic) finite automata, and that they can even accept languages that are not context-free. We also separate the deterministic and non-deterministic variants in the case of systems with non-returning communication. We show that there are languages accepted by non-deterministic centralized PCFA, which cannot be recognized by any deterministic variant of the same type.


2019 ◽  
Vol 29 (9) ◽  
pp. 1428-1443
Author(s):  
Guillaume Bonfante ◽  
Florian L. Deloup

AbstractThis article continues the study of the genus of regular languages that the authors introduced in a 2013 paper (published in 2018). In order to understand further the genus g(L) of a regular language L, we introduce the genus size of |L|gen to be the minimal size of all finite deterministic automata of genus g(L) computing L.We show that the minimal finite deterministic automaton of a regular language can be arbitrarily far away from a finite deterministic automaton realizing the minimal genus and computing the same language, in terms of both the difference of genera and the difference in size. In particular, we show that the genus size |L|gen can grow at least exponentially in size |L|. We conjecture, however, the genus of every regular language to be computable. This conjecture implies in particular that the planarity of a regular language is decidable, a question asked in 1976 by R. V. Book and A. K. Chandra. We prove here the conjecture for a fairly generic class of regular languages having no short cycles. The methods developed for the proof are used to produce new genus-based hierarchies of regular languages and in particular, we show a new family of regular languages on a two-letter alphabet having arbitrary high genus.


2016 ◽  
Vol 27 (02) ◽  
pp. 187-214 ◽  
Author(s):  
Martin Kutrib ◽  
Andreas Malcher ◽  
Matthias Wendlandt

We consider the model of deterministic set automata which are basically deterministic finite automata equipped with a set as an additional storage medium. The basic operations on the set are the insertion of elements, the removing of elements, and the test whether an element is in the set. We investigate the computational power of deterministic set automata and compare the language class accepted with the context-free languages and classes of languages accepted by queue automata. As result the incomparability to all classes considered is obtained. Furthermore, we examine the closure properties under several operations. Then we show that deterministic set automata may be an interesting model from a practical point of view by proving that their regularity problem as well as the problems of emptiness, finiteness, infiniteness, and universality are decidable. Finally, the descriptional complexity of deterministic and nondeterministic set automata is investigated. A conversion procedure that turns a deterministic set automaton accepting a regular language into a deterministic finite automaton is developed which leads to a double exponential upper bound. This bound is proved to be tight in the order of magnitude by presenting also a double exponential lower bound. In contrast to these recursive bounds we obtain non-recursive trade-offs when nondeterministic set automata are considered.


2009 ◽  
Vol 20 (04) ◽  
pp. 629-645 ◽  
Author(s):  
GIOVANNI PIGHIZZINI

The simulation of deterministic pushdown automata defined over a one-letter alphabet by finite state automata is investigated from a descriptional complexity point of view. We show that each unary deterministic pushdown automaton of size s can be simulated by a deterministic finite automaton with a number of states that is exponential in s. We prove that this simulation is tight. Furthermore, its cost cannot be reduced even if it is performed by a two-way nondeterministic automaton. We also prove that there are unary languages for which deterministic pushdown automata cannot be exponentially more succinct than finite automata. In order to state this result, we investigate the conversion of deterministic pushdown automata into context-free grammars. We prove that in the unary case the number of variables in the resulting grammar is strictly smaller than the number of variables needed in the case of nonunary alphabets.


Author(s):  
Holger Bock Axelsen ◽  
Martin Kutrib ◽  
Andreas Malcher ◽  
Matthias Wendlandt

It is well known that reversible finite automata do not accept all regular languages, that reversible pushdown automata do not accept all deterministic context-free languages, and that reversible queue automata are less powerful than deterministic real-time queue automata. It is of significant interest from both a practical and theoretical point of view to close these gaps. We here extend these reversible models by a preprocessing unit which is basically a reversible injective and length-preserving finite state transducer. It turns out that preprocessing the input using such weak devices increases the computational power of reversible deterministic finite automata to the acceptance of all regular languages, whereas for reversible pushdown automata the accepted family of languages lies strictly in between the reversible deterministic context-free languages and the real-time deterministic context-free languages. For reversible queue automata the preprocessing of the input leads to machines that are stronger than real-time reversible queue automata, but less powerful than real-time deterministic (irreversible) queue automata. Moreover, it is shown that the computational power of all three types of machines is not changed by allowing the preprocessing finite state transducer to work irreversibly. Finally, we examine the closure properties of the family of languages accepted by such machines.


Triangle ◽  
2018 ◽  
pp. 89
Author(s):  
Benedek Nagy

Both deterministic and non-deterministic nite state machines (automata) recognize regular languages exactly. Now we extend these machines using two heads to characterize even-linear and linear languages. The heads move in opposite directions in these automata. For even-linear languages, deterministic automata have the same eciency as non-deterministic ones, but for the general case (linear languages) only the non-deterministic version is sucient. We compare our automata to other two-head automata as well.


2018 ◽  
Vol 52 (2-3-4) ◽  
pp. 153-168
Author(s):  
Michal Hospodár ◽  
Galina Jirásková

We study the state complexity of the concatenation operation on regular languages represented by deterministic and alternating finite automata. For deterministic automata, we show that the upper bound m2n − k2n−1 on the state complexity of concatenation can be met by ternary languages, the first of which is accepted by an m-state DFA with k final states, and the second one by an n-state DFA with ℓ final states for arbitrary integers m, n, k, ℓ with 1 ≤ k ≤ m − 1 and 1 ≤ ℓ ≤ n − 1. In the case of k ≤ m − 2, we are able to provide appropriate binary witnesses. In the case of k = m − 1 and ℓ ≥ 2, we provide a lower bound which is smaller than the upper bound just by one. We use our binary witnesses for concatenation on deterministic automata to describe binary languages meeting the upper bound 2m + n + 1 for the concatenation on alternating finite automata. This solves an open problem stated by Fellah et al. [Int. J. Comput. Math. 35 (1990) 117–132].


1978 ◽  
Vol 7 (84) ◽  
Author(s):  
Erik Meineche Schmidt

<p>This thesis analyzes the descriptional power of finite automata, regular expressions, pushdown automata, and certain generalized models of macro grammars. For finite automata and pushdown automata the emphasis is on ambiguity. It is shown that ambiguous nondeterminism allows more succinct definitions than unambiguous nondeterminism which in turn allows more succinct definitions than determinism. The succinctness gain is nonrecursive for pda's and nonpolynomial for finite automata.</p><p>The succinctness of regular expressions and macro grammars is measured in terms of complexity theory. It is shown that the inequivalence problem for Ol macro grammars generating finite languages is hard for nondeterministic double exponential time, and that the ''nonemptiness of complement'' problem for unambiguous regular expressions is in NP. This implies that unambiguous regular expressions are ''easier'' than general regular expressions (unless NP is equal to PSPACE).</p>


Sign in / Sign up

Export Citation Format

Share Document