scholarly journals A novel theory of life and its implications on viruses and robots

2021 ◽  
pp. 1-23
Author(s):  
Yunus A. Çengel

A novel theory of life is proposed and its implications on the viruses and the future robots are discussed. The universal laws of physics are inferred phenomena that originate from the observed regularity in the physical realm. An apparent distinct feature of living beings compared to the nonliving ones is the presence of a higher level of regularity, which is indicative of a supplemental set of governing laws within the sphere of life. In this article a living or animate being is defined concisely as a natural entity whose internal changes and external behavior cannot be predicted by the universal laws and forces of physics alone at all times. Everything else is nonliving or inanimate. Likewise, life is defined as a supplemental set of laws and influences that act over a confined space which constitutes the domain of life, superimposed on the universal laws and forces of physics. Also, life is shown to be a field phenomenon like a quantum field, except that life pervades a bounded region rather than the entire spacetime. It is argued that life is an agency with causal power rather than an ordinary emergent property, and that a virus qualifies as a living being. The proposed field theory of life predicts that the future robots are unlikely to acquire life, and that the notion of highly intelligent future robots posing an existential threat to humanity is, in all likelihood, an illusion.

2021 ◽  
Vol 11 (23) ◽  
pp. 11272
Author(s):  
Nicolás Lori ◽  
José Neves ◽  
José Machado

Recently, from the deduction of the result MIP* = RE in quantum computation, it was obtained that Quantum Field Theory (QFT) allows for different forms of computation in quantum computers that Quantum Mechanics (QM) does not allow. Thus, there must exist forms of computation in the QFT representation of the Universe that the QM representation does not allow. We explain in a simple manner how the QFT representation allows for different forms of computation by describing the differences between QFT and QM, and obtain why the future of quantum computation will require the use of QFT.


2014 ◽  
Vol 6 (2) ◽  
pp. 1079-1105
Author(s):  
Rahul Nigam

In this review we study the elementary structure of Conformal Field Theory in which is a recipe for further studies of critical behavior of various systems in statistical mechanics and quantum field theory. We briefly review CFT in dimensions which plays a prominent role for example in the well-known duality AdS/CFT in string theory where the CFT lives on the AdS boundary. We also describe the mapping of the theory from the cylinder to a complex plane which will help us gain an insight into the process of radial quantization and radial ordering. Finally we will develop the representation of the Virasoro algebra which is the well-known "Verma module".  


2002 ◽  
Author(s):  
Marco Aurelio Do Rego Monteiro ◽  
V. B. Bezerra ◽  
E. M.F. Curado

Author(s):  
Michael Kachelriess

After a brief review of the operator approach to quantum mechanics, Feynmans path integral, which expresses a transition amplitude as a sum over all paths, is derived. Adding a linear coupling to an external source J and a damping term to the Lagrangian, the ground-state persistence amplitude is obtained. This quantity serves as the generating functional Z[J] for n-point Green functions which are the main target when studying quantum field theory. Then the harmonic oscillator as an example for a one-dimensional quantum field theory is discussed and the reason why a relativistic quantum theory should be based on quantum fields is explained.


Author(s):  
Sauro Succi

Chapter 32 expounded the basic theory of quantum LB for the case of relativistic and non-relativistic wavefunctions, namely single-particle quantum mechanics. This chapter goes on to cover extensions of the quantum LB formalism to the overly challenging arena of quantum many-body problems and quantum field theory, along with an appraisal of prospective quantum computing implementations. Solving the single particle Schrodinger, or Dirac, equation in three dimensions is a computationally demanding task. This task, however, pales in front of the ordeal of solving the Schrodinger equation for the quantum many-body problem, namely a collection of many quantum particles, typically nuclei and electrons in a given atom or molecule.


Sign in / Sign up

Export Citation Format

Share Document