Numerical techniques in finite element analysis of eddy current testing problem

2002 ◽  
Vol 15 (1-4) ◽  
pp. 9-14 ◽  
Author(s):  
Motoo Tanaka ◽  
Hajeme Tsuboi
1998 ◽  
Vol 51 (5) ◽  
pp. 303-320 ◽  
Author(s):  
D. W. Nicholson ◽  
N. W. Nelson ◽  
B. Lin ◽  
A. Farinella

Finite element analysis of hyperelastic components poses severe obstacles owing to features such as large deformation and near-incompressibility. In recent years, outstanding issues have, to a considerable extent, been addressed in the form of the hyperelastic element available in commercial finite element codes. The current review article, which updates and expands a 1990 article in Rubber Reviews, is intended to serve as a brief exposition and selective survey of the recent literature. Published simulations are listed. Rubber constitutive models and the measurement of their parameters are addressed. The underlying incremental variational formulation is sketched for thermomechanical response of compressible, incompressible and near-incompressible elastomers. Coupled thermomechanical effects and broad classes of boundary conditions, such as variable contact, are encompassed. Attention is given to advanced numerical techniques such as arc length methods. Remaining needs are assessed. This review article contains 142 references.


2021 ◽  
Vol 36 (1) ◽  
pp. 99-107
Author(s):  
Feng Jiang ◽  
Shulin Liu ◽  
Li Tao

The quantitative evaluation of defects in eddy current testing is of great significance. Impedance analysis, as a traditional method, is adopted to determine defects in the conductor, however, it is not able to depict the shape, size and location of defects quantitatively. In order to obtain more obvious characteristic quantities and improve the ability of eddy current testing to detect defects, the study of cracks in metal pipes is carried out by utilizing the analysis method of three-dimensional magnetic field in present paper. The magnetic field components in the space near the crack are calculated numerically by using finite element analysis. The simulation results confirm that the monitoring of the crack change can be achieved by measuring the magnetic field at the arrangement positions. Besides, the quantitative relationships between the shape, length of the crack and the magnetic field components around the metal pipe are obtained. The results show that the axial and radial magnetic induction intensities are affected more significantly by the cross-section area of the crack. Bz demonstrates obvious advantages in analyzing quantitatively crack circumference length. Therefore, the response signal in the three-dimensional direction of the magnetic field gets to intuitively reflect the change of the defect parameter, which proves the effectiveness and practicability of this method.


Sign in / Sign up

Export Citation Format

Share Document