An intelligent urban traffic data fusion analysis method based on improved artificial neural network

2019 ◽  
Vol 37 (4) ◽  
pp. 4413-4423 ◽  
Author(s):  
Xiaodan Liu ◽  
Chunliang Li
2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Mengmeng Jiang ◽  
Qiong Wu ◽  
Xuetao Li

In modern urban construction, digitalization has become a trend, but the single source of information of traditional algorithms can not meet people’s needs, so the data fusion technology needs to draw estimation and judgment from multisource data to increase the confidence of data, improve reliability, and reduce uncertainty. In order to understand the influencing factors of regional digitalization, this paper conducts multisource heterogeneous data fusion analysis based on regional digitalization of machine learning, using decision tree and artificial neural network algorithm, compares the management efficiency and satisfaction of school population under different algorithms, and understands the data fusion and construction under different algorithms. According to the results, decision-making tree and artificial neural network algorithms were more efficient than traditional methods in building regional digitization, and their magnitude was about 60% higher. More importantly, the machine learning-based methods in multisource heterogeneous data fusion have been better than traditional calculation methods both in computational efficiency and misleading rate with respect to false alarms and missed alarms. This shows that machine learning methods can play an important role in the analysis of multisource heterogeneous data fusion in regional digital construction.


2020 ◽  
Vol 12 (14) ◽  
pp. 2248
Author(s):  
Jae Young Seo ◽  
Sang-Il Lee

As research on the use of satellites in combination with previous hydrological monitoring techniques increases, interest in the application of the machine-learning approach to the prediction of hydrological variables is growing. Ground-based measurements are often limited due to the difficulties in measuring spatiotemporal variations, especially in ungauged areas. In addition, there are no existing satellites capable of measuring total discharge directly. In this study, Artificial neural network (ANN) machine-learning approaches are examined for the prediction of 0.25° total discharge data over the Korean Peninsula using the data fusion of multi-satellites, reanalysis data, and ground-based observations. Terrestrial water storage changes (TWSC) of the Gravity Recovery and Climate Experiment (GRACE) satellite, precipitation of the tropical rainfall measuring mission (TRMM), and soil moisture storage and average temperature of the global land data assimilation system (GLDAS) models are used as ANN model input data. The results demonstrate the relatively good performance of the ANN approach for predicting the total discharge in terms of the correlation coefficient (r = 0.65–0.95), maximum absolute error (MAE = 13.28–20.35 mm/month), root mean square error (RMSE = 22.56–34.77 mm/month), and Nash-Sutcliff efficiency (NSE = 0.42–0.90). The precipitation is identified as the most influential input parameter through a sensitivity analysis. Overall, the ANN-predicted total discharge shows similar spatial patterns to those from other methods, while GLDAS underestimates the total discharge with a smaller dynamic range than the other models. Thus, the potential of the ANN approach described herein shows promise for predicting the total discharge based on the data fusion of multi-satellites, reanalysis data, and ground-based observations.


Author(s):  
Lucien Penlap Woguia ◽  
Jerome Rêche ◽  
Maxime Besacier ◽  
Patrice Gergaud ◽  
Guido Rademaker

Sign in / Sign up

Export Citation Format

Share Document