Regional classification of urban land use based on fuzzy rough set in remote sensing images

2020 ◽  
Vol 38 (4) ◽  
pp. 3803-3812
Author(s):  
Guobin Chen ◽  
Zhongsheng Chen
2020 ◽  
Vol 12 (21) ◽  
pp. 3597
Author(s):  
Xuanyan Dong ◽  
Yue Xu ◽  
Leping Huang ◽  
Zhigang Liu ◽  
Yi Xu ◽  
...  

The ability to precisely map urban land use types can significantly aid urban planning and urban system understanding. In recent years, remote sensing images and social sensing data have been frequently used for urban land use mapping. However, there still remains a problem: what is the best basic unit for fusing remote sensing images with social sensing data? The aim of this study is to explore the impact of spatial units on urban land use mapping, with remote sensing images and social sensing data of Shenzhen City, China. Three different basic units were first applied to delineate urban land use types, and for each unit, a word dictionary was built by fusing natural–physical features from high spatial resolution (HSR) remote sensing images and the socioeconomic semantic features from point of interest (POI) data. The latent Dirichlet allocation (LDA) algorithm and random forest methods were then applied to map the land use of the Futian district—the core region of Shenzhen. The experiment demonstrates that: (1) No matter what kind of spatial unit, it is beneficial to fuse multisource data to improve the performance. However, when using different spatial units, the importances of features are different. (2) Using block-based spatial units results in the final map looking the best. However, a great challenge of this approach is that the scale is too coarse to handle mixed functional areas. (3) Using grid- and object-based units, the problem of mixed functional areas can be better solved. Additionally, the object-based land use map looks better from our visual interpretation. Accordingly, the results of this study could give other researchers references and advice for future studies.


2020 ◽  
Vol 12 (11) ◽  
pp. 1831 ◽  
Author(s):  
Ye Zhang ◽  
Kun Qin ◽  
Qi Bi ◽  
Weihong Cui ◽  
Gang Li

Landscape patterns and building functions are successfully used to provide the social sensing information of urban areas. However, previous studies treated ground objects equally, ignoring their size differences. Considering the different contributions of various types of ground objects in land-use classification, this paper measured nine area-weighted mean landscape-level metrics to describe landscape patterns based on the land-cover map, derived from remote sensing images. Additionally, the same idea was applied for identifying building functions. Impervious surfaces, which occupy the majority of urban areas, have a decisive impact on land-use classes. In terms of this, this paper proposed the impervious surface area-weighted building-based indexes from the building outline data. To better represent the physical structure of urban areas, the entire study was based on the analysis units delineated by the OpenStreetMap road network. Finally, a random forest model combining the landscape-level metrics and building-based indexes was adopted in Wuchang District of Wuhan city, China. The results showed that the proposed method was effective at describing landscape patterns and identifying building functions for accurate urban land-use classification, increasing the precision by 10.67%. In general, the contribution of landscape-level metrics to the urban land-use classification is slightly greater than that of building-based indexes. Moreover, different land-use types of analysis units express different landscape patterns. It is of great significance for improving urban form and guiding future urban design. The paper demonstrates that area-weighted landscape metrics and building-based indexes offer a better understanding of urban land use, which plays a vital role in urban planning, construction, and management.


Sign in / Sign up

Export Citation Format

Share Document