Pattern recognition of wood structure design parameters under external interference based on artificial neural network with BIM environment

2020 ◽  
Vol 39 (6) ◽  
pp. 8723-8729
Author(s):  
Zheng Qiuling ◽  
Yang Ke ◽  
Xu Qiang ◽  
Zhang Chenglong ◽  
Wang Liguang

Under the influence of novel corona virus pneumonia, the staff are controlled. Therefore, it is a difficult problem to measure the parameters of wood structure building on site. The measurement error of traditional wood structure parameters in complex environment is large, so an efficient and accurate measurement and recognition method is needed. In this paper, a method combining random decrement method and ITD method is proposed to measure the frequency, damping ratio and other structural dynamic parameters of ancient building timber structure under crowd random load excitation. In this paper, the frequency and damping ratio of the typical ancient building timber structure are predicted by using the artificial neural network model trained by the known data. The experimental results show that the population density has a great influence on the measurement of the dynamic parameters of the wooden structure of ancient buildings. Using this method, combined with the long-term monitoring data of temperature and humidity, the influence of various environmental factors on the dynamic characteristics of the structure can be analyzed. This provides data support for structural damage identification and health monitoring.

2018 ◽  
Vol 45 ◽  
pp. 00088 ◽  
Author(s):  
Mariusz Starzec

Simplified methods allow a straightforward and quick determination of parameters of interest. A simplified method of calculation to be used must provide sufficiently accurate simulation results. This paper presents the results of tests completed to evaluate the effects of the parameters which describe a sewer catchment area and network on the value of Tp, a parameter applied in the Dziopak method [18]. The results of 2997 hydrodynamic simulations allowed to formulate an artificial neural network the application of which enabled the determination of the value of Tp dependent on the design parameters of a sewer catchment area and network. The artificial neural network had a very low error R2 = 0.9972 between the expected and determined values of Tp. The completed tests indicated a relationship by which an increase of the rainfall duration, a parameter used in the dimensioning of detention tank, is concomitant to an increase in the value of Tp. The calculations made so far included an assumption that the Tp value is constant irrespective of the design rainfall duration for the dimensioning of detention tank; this assumption has led to gross calculation errors. The paper also provides proof that the inclusion of these relationships allows a more precise determination of the service volume required for a multi-chamber detention tank.


2019 ◽  
Vol 30 (6) ◽  
pp. 3307-3321 ◽  
Author(s):  
Mohammad Reza Pakatchian ◽  
Hossein Saeidi ◽  
Alireza Ziamolki

Purpose This study aims at enhancing the performance of a 16-stage axial compressor and improving the operating stability. The adopted approaches for upgrading the compressor are artificial neural network, optimization algorithms and computational fluid dynamics. Design/methodology/approach The process starts with developing several data sets for certain 2D sections by means of training several artificial neural networks (ANNs) as surrogate models. Afterward, the trained ANNs are applied to the 3D shape optimization along with parametrization of the blade stacking line. Specifying the significant design parameters, a wide range of geometrical variations are considered by implementation of appropriate number of design variables. The optimized shapes are analyzed by applying computational fluid dynamic to obtain the best geometry. Findings 3D optimal results show improvements, especially in the case of decreasing or elimination of near walls corner separations. In addition, in comparison with the base geometry, numerical optimization shows an increase of 1.15 per cent in total isentropic efficiency in the first four stages, which results in 0.6 per cent improvement for the whole compressor, even while keeping the rest of the stages unchanged. To evaluate the numerical results, experimental data are compared with obtained data from simulation. Based on the results, the highest absolute relative deviation between experimental and numerical static pressure is approximately 7.5 per cent. Originality/value The blades geometry of an axial compressor used in a heavy-duty gas turbine is optimized by applying artificial neural network, and the results are compared with the base geometry numerically and experimentally.


2020 ◽  
Vol 53 (7-8) ◽  
pp. 1171-1182 ◽  
Author(s):  
SM Fasih ◽  
Z Mohamed ◽  
AR Husain ◽  
L Ramli ◽  
AM Abdullahi ◽  
...  

This paper proposes an input shaping technique for efficient payload swing control of a tower crane with cable length variations. Artificial neural network is utilized to design a zero vibration derivative shaper that can be updated according to different cable lengths as the natural frequency and damping ratio of the system changes. Unlike the conventional input shapers that are designed based on a fixed frequency, the proposed technique can predict and update the optimal shaper parameters according to the new cable length and natural frequency. Performance of the proposed technique is evaluated by conducting experiments on a laboratory tower crane with cable length variations and under simultaneous tangential and radial crane motions. The shaper is shown to be robust and provides low payload oscillation with up to 40% variations in the natural frequency. With a 40% decrease in the natural frequency, the superiority of the artificial neural network–zero vibration derivative shaper is confirmed by achieving at least a 50% reduction in the overall and residual payload oscillations when compared to the robust zero vibration derivative and extra insensitive shapers designed based on the average operating frequency. It is envisaged that the proposed shaper can be further utilized for control of tower cranes with more parameter uncertainties.


2019 ◽  
Vol 35 (6) ◽  
pp. 829-837 ◽  
Author(s):  
P. H. Chou ◽  
K.N. Chiang ◽  
Steven Y. Liang

ABSTRACTFor electronic packaging structure, there are many design parameters that will affect its reliability performance, using experimental way to obtain the reliability result will take a considerable amount of time. Therefore, how to shorten the design time becomes a critical issue for new electronic packaging structure development. This research will combine artificial intelligence (AI) and simulation technology to assess the long-term reliability of wafer level packaging (WLP). A simulation technology using finite element method (FEM) with appropriate mechanics theories has been validated by multiple experiments will replace the experiment to create reliability results for different WLP structures. After a big WLP structure-reliability database created, this study will apply artificial neural network (ANN) theory to analyze this database and obtains a regression model for structure-reliability relationship of WLP. Once the regression model is established and validated, the WLP geometry, such as pad size, die and buffer layer thickness, and solder volume, etc. can be simply entered, and then the WLP reliability results can be immediately obtained through the ANN regression model.


2018 ◽  
Vol 9 (3) ◽  
pp. 75
Author(s):  
Preeti Kulkarni ◽  
Shreenivas N. Londhe

Concrete is a highly complex composite construction material and modeling using computing tools to predict concrete strength is a difficult task. In this work an effort is made to predict compressive strength of concrete after 28 days of curing, using Artificial Neural Network (ANN) and Genetic programming (GP). The data for analysis mainly consists of mix design parameters of concrete, coefficient of soft sand and maximum size of aggregates as input parameters. ANN yields trained weights and biases as the final model which sometime may impediment in its application at operational level. GP on other hand yields an equation as its output making its plausible tool for operational use. Comparison of the prediction results displays the result the model accuracy of both ANN and GP as satisfactory, giving GP a working advantage owing to its output in an equation form. A knowledge extraction technique used with the weights and biases of ANN model to understand the most influencing parameters to predict the 28 day strength of concrete, promises to prove ANN as grey box rather than a black box. GP models, in form of explicit equations, show the influencing parameters with reference to the presence of the relevant parameters in the equations.


Author(s):  
T. Z. Ibragimov ◽  

methods of data mining were used to predict the Septoria leaf blotch of wheat. A system has been developed that allows parallel forecasting with the same data set using the methods of an artificial neural network, a decision tree, and a naive Bayesian classifier. The system allows you to interactively adjust the design parameters for each of the methods, see the results obtained and evaluate their effectiveness.


2017 ◽  
Vol 47 (1) ◽  
pp. 68-81
Author(s):  
Anierudh Vishwanathan

This paper suggests a novel design of a multi cylinder internal combustion engine crankshaft which will convert the unnecessary/extra torque provided by the engine into speed of the vehicle. Transmission gear design has been incorporated with crankshaft design to enable the vehicle attain same speed and torque at lower R.P.M resulting in improved fuel economy provided the operating power remains same. This paper also depicts the reduction in the fuel consumption of the engine due to the proposed design of the crankshaft system. In order to accommodate the wear and tear of the crankshaft due to the gearing action, design parameters like crankpin diameter, journal bearing diameter, crankpin fillet radii and journal bearing fillet radii have been optimized for output parameters like stress which has been calculated using finite element analysis with ANSYS Mechanical APDL and minimum volume using integrated Artificial Neural Network-Multi objective genetic algorithm. The data set for the optimization process has been generated using Latin Hypercube Sampling technique.


Sign in / Sign up

Export Citation Format

Share Document