scholarly journals A 2-order additive fuzzy measure identification method based on intuitionistic fuzzy sets and its application in credit evaluation

2021 ◽  
pp. 1-13
Author(s):  
Mu Zhang ◽  
Si-si Li ◽  
Bi-bin Zhao

In view of the problem that it is difficult to quantitatively assess the interactivity between attributes in the identification process of 2-order additive fuzzy measure, this work uses the intuitionistic fuzzy sets (IFSs) to describe and deal with the interactivity between attributes. Firstly, the interactivity between attributes is defined by the supermodular game theory. On this basis, the experts employ the intuitionistic fuzzy number (IFN) to assess the interactivity between attributes, Secondly, the opinions of all experts are aggregated by using the intuitionistic fuzzy weighted average operator (IFWA). Finally, based on the aggregated results, the intuitionistic fuzzy interaction degree between attributes is defined and calculated by the score function of IFN. Thus, a 2-order additive fuzzy measure identification method based on IFSs is further proposed. Based on the proposed method, using the Choquet fuzzy integral as nonlinear integration operator, a multi-attribute decision making (MADM) process is presented. Taking the credit evaluation of the big data listed companies in China as an application example, the feasibility and effectiveness of the proposed method is verified by the analysis results of application example.

Author(s):  
Zeshui Xu

Intuitionistic fuzzy sets can describe the uncertainty and complexity of the world flexibly, so it has been widely used in multi-attribute decision making. Traditional intuitionistic fuzzy aggregation operators are usually based on the probability measure, namely, they consider that the attributes of objects are independent. But in actual situations, it is difficult to ensure the independence of attributes, so these operators are unsuitable in such situations. Fuzzy measure is able to depict the relationships among the attributes more comprehensively, so it can complement the traditional probability measure in dealing with the multi-attribute decision making problems. In this paper, we first analyze the existing intuitionistic fuzzy operators based on fuzzy measure, then introduce two novel additive intuitionistic fuzzy aggregation operators based on the Shapley value and the Choquet integral, respectively, and show their advantages over other ones.


2021 ◽  
Vol 40 (1) ◽  
pp. 1147-1160
Author(s):  
Yali Cheng ◽  
Yonghong Li ◽  
Jie Yang

Linguistic intuitionistic fuzzy sets can qualitatively rather than quantitatively express data in the form of membership degree. But quantitative tools are required to handle qualitative information. Therefore, an improved linguistic scale function, which can more accurately manifest the subjective feelings of decision-makers, is employed to deal with linguistic intuitionistic information. Subsequently, due to some commonly used distance measures do not comprehensively evaluate the information of linguistic intuitionistic fuzzy sets, an improved distance measure of linguistic intuitionistic fuzzy sets is designed. It considers the cross-evaluation information to get more realistic reasoning results. In addition, a new similarity measure defined by nonlinear Gaussian diffusion model is proposed, which can provide different response scales for different information between various schemes. The properties of these measures are also studied in detail. On this basis, a method in linguistic intuitionistic fuzzy environment is developed to handle multi-attribute decision-making problems. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed method and the influence of the parameters is analyzed.


Author(s):  
Ibtesam Alshammari ◽  
Mani Parimala ◽  
Saeid Jafari

Imprecision in the decision-making process is an essential consideration. In order to navigate the imprecise decision-making framework, measuring tools and methods have been developed. Pythagorean fuzzy soft sets are one of the new methods for dealing with imprecision. Pythagorean fuzzy soft topological spaces is an extension of intuitionistic fuzzy soft topological spaces. These sets generalizes intuitionistic fuzzy sets for a broader variety of implementations. This work is a gateway to study such a problem. The concept of Pythagorean fuzzy soft topological spaces(PyFSTS), interior, closure, boundary, neighborhood of Pythagorean fuzzy soft spaces PyFSS, base and subspace of PyFSTSs are presented and its properties are figured out. We established an algorithm under uncertainty based on PyFSTS for multi-attribute decision-making (MADM) and to validate this algorithm, a numerical example is solved for suitable brand selection. Finally, the benefits, validity, versatility and comparison of our proposed algorithms with current techniques are discussed.The advantage of the proposed work is to detect vagueness with more sizably voluminous valuation space than intuitionistic fuzzy sets.


Sign in / Sign up

Export Citation Format

Share Document