linguistic scale function
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 7)

H-INDEX

5
(FIVE YEARS 1)

Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 113
Author(s):  
Rajkumar Verma

Fermatean fuzzy linguistic (FFL) set theory provides an efficient tool for modeling a higher level of uncertain and imprecise information, which cannot be represented using intuitionistic fuzzy linguistic (IFL)/Pythagorean fuzzy linguistic (PFL) sets. On the other hand, the linguistic scale function (LSF) is the better way to consider the semantics of the linguistic terms during the evaluation process. It is worth noting that the existing operational laws and aggregation operators (AOs) for Fermatean fuzzy linguistic numbers (FFLNs) are not valid in many situations, which can generate errors in real-life applications. The present study aims to define new robust operational laws and AOs under Fermatean fuzzy linguistic environment. To do so, first, we define some new modified operational laws for FFLNs based on LSF and prove some important mathematical properties of them. Next, the work defines several new AOs, namely, the FFL-weighted averaging (FFLWA) operator, the FFL-weighted geometric (FFLWG) operator, the FFL-ordered weighted averaging (FFLOWA) operator, the FFL-ordered weighted geometric (FFLOWG) operator, the FFL-hybrid averaging (FFLHA) operator and the FFL-hybrid geometric (FFLHG) operator under Fermatean fuzzy linguistic environment. Several properties of these AOs are investigated in detail. Further, based on the proposed AOs, a new decision-making approach with Fermatean fuzzy linguistic information is developed to solve group decision-making problems with multiple attributes. Finally, to illustrate the effectiveness of the present approach, a real-life supplier selection problem is presented where the evaluation information of the alternatives is given in terms of FFLNs. Compared to the existing methods, the salient features of the developed approach are (1) it can solve decision-making problems with qualitative information data using FFLNs; (2) It can consider the attitudinal character of the decision-makers during the solution process; (3) It has a solid ability to distinguish the optimal alternative.


2021 ◽  
Author(s):  
Rajkumar Verma ◽  
Niti Mittal

Abstract The linguistic Pythagorean fuzzy set (LPFS) is a prominent tool for comprehensively representing qualitative information data. Aggregation operators (AOs) play an essential role in multiple attribute group decision-making (MAGDM) problems. In the present manuscript, we define four new operational laws for linguistic Pythagorean fuzzy numbers (LPFNs) based on Archimedean t-norm and t-conorm. Paper also uses the linguistic scale function (LSF) in order to accommodate different semantic situations during the operational process. Next, we introduce some new generalized arithmetic AOs, including the generalized Archimedean linguistic Pythagorean fuzzy weighted averaging (GALPFWA) operator, the generalized Archimedean linguistic Pythagorean fuzzy ordered weighted averaging (GALPFOWA) operator, the generalized Archimedean linguistic Pythagorean fuzzy hybrid averaging (GALPFHA) operator along with their desirable properties. The developed AOs include several existing linguistic Pythagorean fuzzy aggregation operators as their particular and limiting cases. Finally, using the proposed AOs, a new approach for solving the MAGDM problem is given and illustrated with a real-life numerical example to demonstrate its flexibility and effectiveness.


Author(s):  
Rajkumar Verma

Fermatean fuzzy linguistic (FFL) set theory provides an efficient tool for modeling a higher level of uncertain and imprecise information, which cannot be represented using intuitionistic fuzzy linguistic (IFL)/Pythagorean fuzzy linguistic (PFL) sets. On the other hand, the linguistic scale function is the better way to consider the semantics of the linguistic terms during the evaluation process. In the present paper, we first define some new modified operational laws for Fermatean fuzzy linguistic numbers (FFLNs) based on linguistic scale function (LSF) to overcome the shortcomings of the existing operational laws and prove some important mathematical properties of them. Based on it, the work defines several new aggregation operators (AOs), namely, the FFL-weighted averaging (FFLWA) operator, the FFL-weighted geometric (FFLWG) operator, the FFL-ordered weighted averaging (FFLOWA) operator, the FFL-ordered weighted geometric (FFLOWG) operator, the FFL-hybrid averaging (FFLHA) operator and the FFL-hybrid geometric (FFLHG) operator under FFL environment. Several properties of these AOs are investigated in detail. Further, based on these operators, a multiple attribute group decision-making (MAGDM) approach with FFL information is developed. Finally, to illustrate the effectiveness of the present approach, a real-life supplier selection problem is presented where the evaluation information of the alternatives is given in terms of FFLNs.


2021 ◽  
Vol 40 (1) ◽  
pp. 1147-1160
Author(s):  
Yali Cheng ◽  
Yonghong Li ◽  
Jie Yang

Linguistic intuitionistic fuzzy sets can qualitatively rather than quantitatively express data in the form of membership degree. But quantitative tools are required to handle qualitative information. Therefore, an improved linguistic scale function, which can more accurately manifest the subjective feelings of decision-makers, is employed to deal with linguistic intuitionistic information. Subsequently, due to some commonly used distance measures do not comprehensively evaluate the information of linguistic intuitionistic fuzzy sets, an improved distance measure of linguistic intuitionistic fuzzy sets is designed. It considers the cross-evaluation information to get more realistic reasoning results. In addition, a new similarity measure defined by nonlinear Gaussian diffusion model is proposed, which can provide different response scales for different information between various schemes. The properties of these measures are also studied in detail. On this basis, a method in linguistic intuitionistic fuzzy environment is developed to handle multi-attribute decision-making problems. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed method and the influence of the parameters is analyzed.


2020 ◽  
Vol 39 (3) ◽  
pp. 4111-4131
Author(s):  
Donghai Liu ◽  
Yuanyuan Liu ◽  
Lizhen Wang

The linguistic q-rung orthopair fuzzy set is a powerful tool in representing linguistic assessments. Considering that the traditional decision making methods cannot deal with the situation that the best choice may not be the minimum or the maximum but between them, we propose an innovative TOPSIS method with linguistic q-rung orthopair fuzzy numbers based on the reference ideal theory. Firstly, the new operations of linguistic q-rung orthopair fuzzy sets are introduced based on the linguistic scale function. In addition, we propose the Minkowski distance measure of linguistic q-rung orthopair fuzzy numbers to make up for the defects of the existing distance measures based on the linguistic scale function. By using the new operations of linguistic q-rung orthopair fuzzy numbers, we propose the linguistic q-rung orthopair fuzzy weighted averaging operator and the linguistic q-rung orthopair fuzzy weighted geometric operator to aggregate linguistic decision information. Furthermore, we develop a reference ideal TOPSIS method to the linguistic q-rung orthopair fuzzy decision making problems. Finally, an example concerning the postgraduate entrance qualification assessment is given to illustrate the feasibility of the proposed method. Some comparative analysis is also given to show the efficiency of the method, in addition, the sensitivity analysis and stability analysis of the proposed method are also given.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 602 ◽  
Author(s):  
Donghai Liu ◽  
Xiaohong Chen ◽  
Dan Peng

This paper proposes a neutrosophic hesitant fuzzy linguistic term set (NHFLTS) based on hesitant fuzzy linguistic term set (HFLTS) and neutrosophic set (NS), which can express the inconsistent and uncertainty information flexibly in multiple criteria decision making problems. The basic operational laws of NHFLTS based on linguistic scale function are also discussed. Then we propose the generalized neutrosophic hesitant fuzzy linguistic distance measure and discuss its properties. Furthermore, a new similarity measure of NHFLTS combines the generalized neutrosophic hesitant fuzzy linguistic distance measure and the cosine function is given. A corresponding cosine distance measure between NHFLTSs is proposed according to the relationship between the similarity measure and the distance measure, and we develop the technique for order preference by similarity to an ideal solution (TOPSIS) method to the obtained cosine distance measure. The main advantages of the proposed NHFLTS is defined on linguistic scale function, the decision makers can flexibly convert the linguistic information to semantic values, and the proposed cosine distance measure between NHFLTSs with TOPSIS method can deal with the related decision information not only from the point of view of algebra, but also from the point of view of geometry. Finally, the reasonableness and effectiveness of the proposed method is demonstrated by the illustrative example, which is also compared to the other existing methods.


Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 367 ◽  
Author(s):  
Donghai Liu ◽  
Yuanyuan Liu ◽  
Xiaohong Chen

The existing cosine similarity measure for hesitant fuzzy linguistic term sets (HFLTSs) has an impediment as it does not satisfy the axiom of similarity measure. Due to this disadvantage, a new similarity measure combining the existing cosine similarity measure and the Euclidean distance measure of HFLTSs is proposed, which is constructed based on a linguistic scale function; the related properties are also given. According to the relationship between the distance measure and the similarity measure, a corresponding distance measure between HFLTSs is obtained. Furthermore, we generalize the technique for order preference by similarity to an ideal solution (TOPSIS) method to the obtained distance measure of the HFLTSs. The principal advantages of the proposed method are that it cannot only effectively transform linguistic information in different semantic environments, but it can also avoid the shortcomings of existing the cosine similarity measure. Finally, a case study is conducted to illustrate the feasibility and effectiveness of the proposed method, which is compared to the existing methods.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Donghai Liu ◽  
Xiaohong Chen ◽  
Dan Peng

We propose the cosine similarity measures for intuitionistic fuzzy linguistic sets (IFLSs) and interval-valued intuitionistic fuzzy linguistic sets (IVIFLSs), which are expressed by the linguistic scale function based on the cosine function. Then, the weighted cosine similarity measure and the ordered weighted cosine similarity measure for IFLSs and IVIFLSs are introduced by taking into account the importance of each element, and the properties of the cosine similarity measures are also given. The main advantage of the proposed cosine similarity measures is that the decision-makers can flexibly select the linguistic scale function depending on the actual semantic situation. Finally, we present the application of the cosine similarity measures for intuitionistic fuzzy linguistic term sets and interval-valued intuitionistic fuzzy linguistic term sets to pattern recognition and medical diagnosis, and the existing cosine similarity measures are compared with the proposed cosine similarity measures by the illustrative example.


Sign in / Sign up

Export Citation Format

Share Document