Adsorption of doxepin drug on the surface of B12N12 and Al12N12 nanoclusters: DFT and TD-DFT perspectives

2021 ◽  
pp. 1-16
Author(s):  
Ebrahim Balali ◽  
Sanaz Davatgaran ◽  
Masoome Sheikhi ◽  
Siyamak Shahab ◽  
Sadegh Kaviani

The adsorption of Doxepin (DOX) drug on the surfaces of B12N12 and Al12N12 nanoclusters was studied by using DFT and TD-DFT calculations at the B3PW91 method and 6–31 + G * basis set in the solvent (water). The adsorption effect of the DOX drug on the bond lengths, electronic properties, and dipole moment of the B12N12 and Al12N12 nanoclusters was studied. The change in λ max was assessed by an investigation of calculated UV spectra. NBO analysis displayed a charge transfer between DOX and two nanoclusters. The LOL and ELF values of the B–N bond are the greater than B–O, Al–O, and Al–N bonds, confirming stronger interaction between the boron atom of B12N12 nanocluster and the nitrogen atom of the DOX drug. It is found that the B12N12 nanocluster can be suitable as a drug carrier system for the delivery of DOX drug. The results of our study can be used to design a suitable carrier for the DOX drug.

2019 ◽  
Vol 19 (2) ◽  
pp. 91-104 ◽  
Author(s):  
Masoome Sheikhi ◽  
Siyamak Shahab ◽  
Radwan Alnajjar ◽  
Mahin Ahmadianarog ◽  
Sadegh Kaviani

Objective: In the present study, the interaction between drug Tyrphostin AG528 and CNT(6,6-6) nanotube by Density Functional Theory (DFT) calculations in solvent water has been investigated for the first time. Methods and Results: According to the calculations, intermolecular hydrogen bonds take place between an active position of the molecule Tyrphostin AG528 and hydrogen atoms of the nanotube which play an important role in the stability of complex CNT(6,6- 6)/Tyrphostin AG528. The non-bonded interaction effects of the molecule Tyrphostin AG528 with CNT(6,6-6) nanotube on the electronic properties, chemical shift tensors and natural charge have also been detected. The natural bond orbital (NBO) analysis suggested that the molecule Tyrphostin AG528 as an electron donor and the CNT(6,6-6) nanotube play the role of an electron acceptor at the complex CNT(6,6-6)/Tyrphostin AG528. Conclusion: The electronic spectra of the Tyrphostin AG528 drug and complex CNT(6,6-6)/Tyrphostin AG528 in solvent water were calculated by Time-Dependent Density Functional Theory (TD-DFT) for the investigation of adsorption effect of the Tyrphostin AG528 drug over nanotube on maximum wavelength. Then, the possibility of the use of CNT(6,6-6) nanotube for Tyrphostin AG528 delivery to the diseased cells has been established.


2021 ◽  
Vol 9 (9) ◽  
pp. 2233-2239
Author(s):  
Adrià Botet-Carreras ◽  
Cristina Tamames-Tabar ◽  
Fabrice Salles ◽  
Sara Rojas ◽  
Edurne Imbuluzqueta ◽  
...  

Despite the interesting chemopreventive, antioxidant and antiangiogenic effects of the natural bioflavonoid genistein (GEN), its low aqueous solubility and bioavailability make it necessary to administer it using a suitable drug carrier system.


2008 ◽  
Vol 1140 ◽  
Author(s):  
Wolfgang Tremel ◽  
Mohammed Ibrahim Shukoor ◽  
Filipe Natalio ◽  
Muhammad Nawaz Tahir ◽  
Matthias Wiens ◽  
...  

ABSTRACTMnO nanoparticles were conjugated to single stranded DNA (ssDNA), Cytosin-phosphatidyl-Guanosin oligonucleotide (CpG ODN) to detect and activate Toll-like (TLR9) receptors in cells and to follow nanoparticle cellular trafficking by different means of imaging while at the same time serving as a drug carrier system. By virtue of their magnetic properties these nanoparticles may serve as vehicles for the transport of target molecules into cells, while the fluorescent target ligand allows optical detection simultaneously.x


1986 ◽  
Vol 3 (1-4) ◽  
pp. 143-154 ◽  
Author(s):  
C.W.J. Grolleman ◽  
A.C. de Visser ◽  
J.G.C. Wolke ◽  
H. van der Goot ◽  
H. Timmerman

Biomaterials ◽  
2005 ◽  
Vol 26 (15) ◽  
pp. 2723-2732 ◽  
Author(s):  
Sabine Balthasar ◽  
Kerstin Michaelis ◽  
Norbert Dinauer ◽  
Hagen von Briesen ◽  
Jörg Kreuter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document