Semifluorinated alkanes as a liquid drug carrier system for topical ocular drug delivery

2014 ◽  
Vol 88 (1) ◽  
pp. 123-128 ◽  
Author(s):  
R.M. Dutescu ◽  
C. Panfil ◽  
O.M. Merkel ◽  
N. Schrage
Author(s):  
Dr.S.Bhagavathy Sivathanu ◽  
Shivapriya G ◽  
Shivapriya G

Liposome is a spherical vesicle which contains atleast one lipid bilayer. Liposomes are used as a novel drug carriers because of its hydrophobic and hydrophilic nature, it has many advantages in the field of medical sciences. There are some other drug carriers like dendrimers, micelles, niosomes. Out of all, liposomes are considered to be the most promising agent for drug delivery. The uniqueness of liposome is when it is used as a pharmaceutical drug, it acts as a natural receptor. Thus it acts as an antigen and binds with the antibody (cancer cell) without causing any damage to the adjacent cells. For the synthesis of liposomes, a phospholipid is required. The liposomes can be synthesized using egg yolk and chloroform. So the basic phospholipid is obtained from egg yolk. For more stability, the liposomes are prepared using popc. The present work  discuss about the effective preparation of drug loaded liposomes using popc (1- palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine). POPC is an important phospholipid for biophysical experiments. Additionally chloroform is used as the solvent for the liposome preparation. The drug chosen for liposome loading is vitexin (vxn), which is an effective therapeutic agent against inflammation and cancer. The vesicular size, shape, drug entrapment efficacy, stability, electrochemical property and drug releasing property of the formulated liposomes were characterized. The results showed that the formulated liposomes are considered as the better drug carrier system and good choice for biotransformation within the cell to reach the target site such as cancer cells. Even though available treatments like chemotherapy and radiation therapy, causes damage to the surrounding cells, the alternative drug transferring system such as liposomal mediated drug transfer within the cell is considered as good choice of treatment to avoid such complications. The aim of liposome mediated  drug carrier system is to develop a method to reach the drug to the target site. After drug delivery at the target site, the liposomes are fused within the surface of the body. This is because of the pH of liposomes, which is at 7.4 and temperature is maintained at 37 oC. So, the vxn loaded liposomes are considered as the novel drug carriers for the successful targetted drug delivery.


Author(s):  
Eric Lehner ◽  
Matthias Menzel ◽  
Daniel Gündel ◽  
Stefan K. Plontke ◽  
Karsten Mäder ◽  
...  

AbstractThe effective delivery of drugs to the inner ear is still an unmet medical need. Local controlled drug delivery to this sensory organ is challenging due to its location in the petrous bone, small volume, tight barriers, and high vulnerability. Local intracochlear delivery of drugs would overcome the limitations of intratympanic (extracochlear) and systemic drug application. The requirements for such a delivery system include small size, appropriate flexibility, and biodegradability. We have developed biodegradable PLGA-based implants for controlled intracochlear drug release that can also be used in combination with cochlear implants (CIs), which are implantable neurosensory prosthesis for hearing rehabilitation. The drug carrier system was tested for implantation in the human inner ear in 11 human temporal bones. In five of the temporal bones, CI arrays from different manufacturers were implanted before insertion of the biodegradable PLGA implants. The drug carrier system and CI arrays were implanted into the scala tympani through the round window. Implanted temporal bones were evaluated by ultra-high-resolution computed tomography (µ-CT) to illustrate the position of implanted electrode carriers and the drug carrier system. The µ-CT measurements revealed the feasibility of implanting the PLGA implants into the scala tympani of the human inner ear and co-administration of the biodegradable PLGA implant with a CI array. Graphical abstract


2019 ◽  
Vol 9 (7) ◽  
pp. 1487-1500 ◽  
Author(s):  
Selvakani Prabakaran ◽  
Murugaraj Jeyaraj ◽  
Ammavasi Nagaraj ◽  
Kishor Kumar Sadasivuni ◽  
Mariappan Rajan

2021 ◽  
Vol 11 (7) ◽  
pp. 1045-1050
Author(s):  
Gang Sun ◽  
Jin Zhang ◽  
Shuai Wu ◽  
Yun Liu

This study was aimed at exploring the regulatory mechanism of auclear-targeted pshHIF-1α nano-drug carrier system (NPNCS) in the treatment of breast cancer in rats. MDA-MB-231 cell was cultured and DJ-1 and PTEN mRNA level was detected by qRT-PCR along with analysis of cell viability by CCK-8 and apoptosis by means of flow cytometry. The rats were assigned into control group, nuclear-targeted pshHIF-1α nanopharmaceutical system treatment group, and nuclear-targeted pshHIF-1α nano-pharmaceutical system+PTEN inhibitor SF1670 group, followed by analysis of cell proliferation by EdU staining, cell apoptosis by flow cytometry, and the levels of DJ-1, PTEN, and p-AKT. Compared with MDA-MB-231 cells treated with NPNCS, cells without intervention showed decreased PTEN and increased DJ-1 level. NPNCS induced cell apoptosis. Administration of nuclear-targeted pshHIF-1α nano-drug delivery system down-regulated DJ-1 and up-regulated PTEN. Combined treatment with SF1670 promoted p-AKT level and decreased the inhibitory effect of NPNCS on p-AKT level. In conclusion, the nuclear-targeted pshHIF-1α nano-drug delivery system down-regulated DJ-1 and exerted a tumor suppressor and pro-apoptotic effect, which wasrelated to p-AKT phosphorylation and up-regulation of PTEN.


2019 ◽  
Vol 16 (3) ◽  
pp. 258-265
Author(s):  
Kei Takahashi ◽  
Tomomi Masuda ◽  
Mitsunori Harada ◽  
Tadashi Inoue ◽  
Shinsuke Nakamura ◽  
...  

Objective: This study aimed to examine whether DC101 (anti-VEGFR2 antibody)- modified micelles have applications as novel drug delivery devices, which allow small molecule antiangiogenic agents to deliver to angiogenic sites on a murine laser-induced choroidal neovascularization (CNV) model. Materials and Method: CNV was induced by photocoagulation on the unilateral eye of each mouse under anesthesia. Immediately after laser coagulation, E7974-loaded DC101-modified micelles and motesanib-loaded DC101-modified micelles were intravitreally administrated. Two weeks after photocoagulation, CNV was visualized using fluorescein-conjugated dextran (MW=2,000 kDa), and the CNV area was measured in retinal pigment epithelium (RPE)-choroidal flat mounts. Results: Intravitreal administration of both DC101-modified micelles loaded with E7974 at 2 µM and motesanib at 2 µM significantly reduced CNV area in the murine laser-induced CNV model at a clearly lower concentration than the effective dose of each agent. Conclusion: These results suggest that DC101-modified micelle might be effective drug carrier system for treating CNV and other ocular angiogenic diseases.


2021 ◽  
Vol 9 (9) ◽  
pp. 2233-2239
Author(s):  
Adrià Botet-Carreras ◽  
Cristina Tamames-Tabar ◽  
Fabrice Salles ◽  
Sara Rojas ◽  
Edurne Imbuluzqueta ◽  
...  

Despite the interesting chemopreventive, antioxidant and antiangiogenic effects of the natural bioflavonoid genistein (GEN), its low aqueous solubility and bioavailability make it necessary to administer it using a suitable drug carrier system.


Sign in / Sign up

Export Citation Format

Share Document