Kinesthetic illusion induced by visual stimulation influences sensorimotor event-related desynchronization in stroke patients with severe upper-limb paralysis: A pilot study

2020 ◽  
pp. 1-11
Author(s):  
Megumi Okawada ◽  
Fuminari Kaneko ◽  
Keiichiro Shindo ◽  
Masaki Yoneta ◽  
Katsuya Sakai ◽  
...  

Background: Repetition of motor imagery improves the motor function of patients with stroke. However, patients who develop severe upper-limb paralysis after chronic stroke often have an impaired ability to induce motor imagery. We have developed a method to passively induce kinesthetic perception using visual stimulation (kinesthetic illusion induced by visual stimulation [KINVIS]). Objective: This pilot study further investigated the effectiveness of KINVIS in improving the induction of kinesthetic motor imagery in patients with severe upper-limb paralysis after stroke. Methods: Twenty participants (11 with right hemiplegia and 9 with left hemiplegia; mean time from onset [±standard deviation], 67.0±57.2 months) with severe upper-limb paralysis who could not extend their paretic fingers were included in this study. The ability to induce motor imagery was evaluated using the event-related desynchronization (ERD) recorded during motor imagery before and after the application of KINVIS for 20 min. The alpha- and beta-band ERDs around the premotor, primary sensorimotor, and posterior parietal cortices of the affected and unaffected hemispheres were evaluated during kinesthetic motor imagery of finger extension and before and after the intervention. Results: Beta-band ERD recorded from the affected hemisphere around the sensorimotor area showed a significant increase after the intervention, while the other ERDs remained unchanged. Conclusions: In patients with chronic stroke who were unable to extend their paretic fingers for a prolonged period of time, the application of KINVIS, which evokes kinesthetic perception, improved their ability to induce motor imagery. Our findings suggest that although KINVIS is a passive intervention, its short-term application can induce changes related to the motor output system.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yi-Qian Hu ◽  
Tian-Hao Gao ◽  
Jie Li ◽  
Jia-Chao Tao ◽  
Yu-Long Bai ◽  
...  

Background. Recently, the brain-computer interface (BCI) has seen rapid development, which may promote the recovery of motor function in chronic stroke patients. Methods. Twelve stroke patients with severe upper limb and hand motor impairment were enrolled and randomly assigned into two groups: motor imagery (MI)-based BCI training with multimodal feedback (BCI group, n = 7) and classical motor imagery training (control group, n = 5). Motor function and electrophysiology were evaluated before and after the intervention. The Fugl-Meyer assessment-upper extremity (FMA-UE) is the primary outcome measure. Secondary outcome measures include an increase in wrist active extension or surface electromyography (the amplitude and cocontraction of extensor carpi radialis during movement), the action research arm test (ARAT), the motor status scale (MSS), and Barthel index (BI). Time-frequency analysis and power spectral analysis were used to reflect the electroencephalogram (EEG) change before and after the intervention. Results. Compared with the baseline, the FMA-UE score increased significantly in the BCI group ( p  = 0.006). MSS scores improved significantly in both groups, while ARAT did not improve significantly. In addition, before the intervention, all patients could not actively extend their wrists or just had muscle contractions. After the intervention, four patients regained the ability to extend their paretic wrists (two in each group). The amplitude and area under the curve of extensor carpi radialis improved to some extent, but there was no statistical significance between the groups. Conclusion. MI-based BCI combined with sensory and visual feedback might improve severe upper limb and hand impairment in chronic stroke patients, showing the potential for application in rehabilitation medicine.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Rachel C. Stockley ◽  
Deborah A. O’Connor ◽  
Phil Smith ◽  
Sylvia Moss ◽  
Lizzie Allsop ◽  
...  

Introduction. This small pilot study aimed to examine the feasibility of an upper limb rehabilitation system (the YouGrabber) in a community rehabilitation centre, qualitatively explore participant experiences, and describe changes after using it. Methods and Material. Chronic stroke participants attending a community rehabilitation centre in the UK were randomised to either a YouGrabber or a gym group and completed 18 training sessions over 12 weeks. The motor activity log, box and block, and fatigue severity score were administered by a blinded assessor before and after the intervention. Semistructured interviews were used to ascertain participants’ views about using the YouGrabber. Results. Twelve participants (6 females) with chronic stroke were recruited. All adhered to the intervention. There were no adverse events, dropouts, or withdrawal. There were no significant differences between the YouGrabber and gym groups although there were significant within group improvements on the motor activity log (median change: 0.59, range: 0.2–1.25; p<0.05) within the YouGrabber group. Participants reported that the YouGrabber was motivational but they expressed frustration with technical challenges. Conclusions. The YouGrabber appeared practical and may improve upper limb activities in people several months after stroke. Future work could examine cognition, cost effectiveness, and different training intensities.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 913.2-914
Author(s):  
T. Birinci ◽  
E. Kaya Mutlu ◽  
S. Altun

Background:Elbow fracture is treated either conservatively or surgically followed by a period of immobilization with casting or splinting. A splint used to immobilize upper limbs for many weeks results in changes in both the peripheral musculature and the central nervous system. It is well known that common complaints after upper limb fractures include weakness, pain, and stiffness; therefore, pain management is important in the early stages of the rehabilitation of upper limb fractures.Objectives:This pilot study aimed to investigate the efficacy of graded motor imaginary (GMI) on pain, range of motion (ROM), and function in patients with posttraumatic stiff elbow.Methods:Fourteen patients with posttraumatic stiff elbow (6 women, mean age: 45.42 ± 11.26 years, mean body mass index: 24.29 ± 3.38 kg\m2and mean duration of immobilization: 4.75 ± 1.03 weeks) were randomly allocated to either GMI or control groups. The GMI group received GMI treatment in addition to a structured exercise program, and the control group received a structured exercise program (two days per week for six weeks) (Figure 1). The assessments included pain at rest and during activity using the visual analog scale (VAS), elbow active ROM with a digital goniometer (Baseline Evaluation Instrument, Fabrication Enterprises, Inc., White Plains, NY), and upper extremity functional status using the Disability of the Arm, Shoulder and Hand Questionnaire (DASH). The assessments were performed at baseline and after the 6-week intervention.Figure 1.Graded motor imagery performed with mirror boxResults:After the 6-week intervention, there was a significant increase in elbow flexion-extension ROM and supination-pronation ROM, and improvement in DASH score in both groups (p<0.05). However, improvement in VAS-rest and VAS-activity was significantly higher in the GMI group than the control group (p=0.03 and p=0.01, respectively).Conclusion:A conservative treatment program consisting of GMI treatment in addition to a structured exercise program applied twice a week for 6 weeks, has been found more effective in decreasing pain in the posttraumatic stiff elbow. It could be concluded that GMI is an effective treatment method for elbow fracture in patients with predominant elbow pain.References:[1] Harris JE, Hebert A. Utilization of motor imagery in upper limb rehabilitation: a systematic scoping review. Clin Rehab. 2015:29(11):1092-1107.[2] Opie GM, Evans A, Ridding MC, Semmler JG. Short-term immobilization influences use-dependent cortical plasticity and fine motor performance. Neuroscience. 2016:330:247-256.[3] Birinci T, Razak Ozdincler A, Altun S, Kural C. A structured exercise programme combined with proprioceptive neuromuscular facilitation stretching or static stretching in posttraumatic stiffness of the elbow: a randomized controlled trial. Clin Rehab. 2019:33(2):241-252.Acknowledgments:The present work was supported by the Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpasa (Project No: TDK-2019-33997).Disclosure of Interests:None declared


2013 ◽  
Vol 45 (2) ◽  
pp. 217-220 ◽  
Author(s):  
J Langan ◽  
K DeLave ◽  
L Phillips ◽  
P Pangilinan ◽  
S Brown

2018 ◽  
Vol 2 (S1) ◽  
pp. 17-17
Author(s):  
Joseph B. Humphries ◽  
David T. Bundy ◽  
Eric C. Leuthardt ◽  
Thy N. Huskey

OBJECTIVES/SPECIFIC AIMS: The objective of this study is to determine the degree to which the use of a contralesionally-controlled brain-computer interface for stroke rehabilitation drives change in interhemispheric motor cortical activity. METHODS/STUDY POPULATION: Ten chronic stroke patients were trained in the use of a brain-computer interface device for stroke recovery. Patients perform motor imagery to control the opening and closing of a motorized hand orthosis. This device was sent home with patients for 12 weeks, and patients were asked to use the device 1 hour per day, 5 days per week. The Action Research Arm Test (ARAT) was performed at 2-week intervals to assess motor function improvement. Before the active motor imagery task, patients were asked to quietly rest for 90 seconds before the task to calibrate recording equipment. EEG signals were acquired from 2 electrodes—one each centered over left and right primary motor cortex. Signals were preprocessed with a 60 Hz notch filter for environmental noise and referenced to the common average. Power envelopes for 1 Hz frequency bands (1–30 Hz) were calculated through Gabor wavelet convolution. Correlations between electrodes were then calculated for each frequency envelope on the first and last 5 runs, thus generating one correlation value per subject, per run. The chosen runs approximately correspond to the first and last week of device usage. These correlations were Fisher Z-transformed for comparison. The first and last 5 run correlations were averaged separately to estimate baseline and final correlation values. A difference was then calculated between these averages to determine correlation change for each frequency. The relationship between beta-band correlation changes (13–30 Hz) and the change in ARAT score was determined by calculating a Pearson correlation. RESULTS/ANTICIPATED RESULTS: Beta-band inter-electrode correlations tended to decrease more in patients achieving greater motor recovery (Pearson’s r=−0.68, p=0.031). A similar but less dramatic effect was observed with alpha-band (8–12 Hz) correlation changes (Pearson’s r=−0.42, p=0.22). DISCUSSION/SIGNIFICANCE OF IMPACT: The negative correlation between inter-electrode power envelope correlations in the beta frequency band and motor recovery indicates that activity in the motor cortex on each hemisphere may become more independent during recovery. The role of the unaffected hemisphere in stroke recovery is currently under debate; there is conflicting evidence regarding whether it supports or inhibits the lesioned hemisphere. These findings may support the notion of interhemispheric inhibition, as we observe less in common between activity in the 2 hemispheres in patients successfully achieving recovery. Future neuroimaging studies with greater spatial resolution than available with EEG will shed further light on changes in interhemispheric communication that occur during stroke rehabilitation.


2018 ◽  
Vol 42 (1) ◽  
pp. 43-52 ◽  
Author(s):  
S. Mazzoleni ◽  
E. Battini ◽  
R. Crecchi ◽  
P. Dario ◽  
F. Posteraro

Author(s):  
Daniel Perez-Marcos ◽  
Odile Chevalley ◽  
Thomas Schmidlin ◽  
Gangadhar Garipelli ◽  
Andrea Serino ◽  
...  

2017 ◽  
Vol 07 (02) ◽  
Author(s):  
Shujuan Pan ◽  
Dahlia Kairy ◽  
Helene Corriveau ◽  
Michel Tousignant

Author(s):  
Giulia Lioi ◽  
Simon Butet ◽  
Mathis Fleury ◽  
Elise Bannier ◽  
Anatole Lécuyer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document