Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO

Semantic Web ◽  
2017 ◽  
Vol 9 (1) ◽  
pp. 77-129 ◽  
Author(s):  
Michael Färber ◽  
Frederic Bartscherer ◽  
Carsten Menne ◽  
Achim Rettinger
Keyword(s):  
2016 ◽  
Vol 12 (3) ◽  
pp. 111-133 ◽  
Author(s):  
Ahmad Assaf ◽  
Aline Senart ◽  
Raphaël Troncy

Ensuring data quality in Linked Open Data is a complex process as it consists of structured information supported by models, ontologies and vocabularies and contains queryable endpoints and links. In this paper, the authors first propose an objective assessment framework for Linked Data quality. The authors build upon previous efforts that have identified potential quality issues but focus only on objective quality indicators that can measured regardless on the underlying use case. Secondly, the authors present an extensible quality measurement tool that helps on one hand data owners to rate the quality of their datasets, and on the other hand data consumers to choose their data sources from a ranked set. The authors evaluate this tool by measuring the quality of the LOD cloud. The results demonstrate that the general state of the datasets needs attention as they mostly have low completeness, provenance, licensing and comprehensibility quality scores.


Author(s):  
Ahmad Assaf ◽  
Aline Senart ◽  
Raphaël Troncy

Ensuring data quality in Linked Open Data is a complex process as it consists of structured information supported by models, ontologies and vocabularies and contains queryable endpoints and links. In this paper, the authors first propose an objective assessment framework for Linked Data quality. The authors build upon previous efforts that have identified potential quality issues but focus only on objective quality indicators that can measured regardless on the underlying use case. Secondly, the authors present an extensible quality measurement tool that helps on one hand data owners to rate the quality of their datasets, and on the other hand data consumers to choose their data sources from a ranked set. The authors evaluate this tool by measuring the quality of the LOD cloud. The results demonstrate that the general state of the datasets needs attention as they mostly have low completeness, provenance, licensing and comprehensibility quality scores.


2017 ◽  
Vol 4 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Diana Effendi

Information Product Approach (IP Approach) is an information management approach. It can be used to manage product information and data quality analysis. IP-Map can be used by organizations to facilitate the management of knowledge in collecting, storing, maintaining, and using the data in an organized. The  process of data management of academic activities in X University has not yet used the IP approach. X University has not given attention to the management of information quality of its. During this time X University just concern to system applications used to support the automation of data management in the process of academic activities. IP-Map that made in this paper can be used as a basis for analyzing the quality of data and information. By the IP-MAP, X University is expected to know which parts of the process that need improvement in the quality of data and information management.   Index term: IP Approach, IP-Map, information quality, data quality. REFERENCES[1] H. Zhu, S. Madnick, Y. Lee, and R. Wang, “Data and Information Quality Research: Its Evolution and Future,” Working Paper, MIT, USA, 2012.[2] Lee, Yang W; at al, Journey To Data Quality, MIT Press: Cambridge, 2006.[3] L. Al-Hakim, Information Quality Management: Theory and Applications. Idea Group Inc (IGI), 2007.[4] “Access : A semiotic information quality framework: development and comparative analysis : Journal ofInformation Technology.” [Online]. Available: http://www.palgravejournals.com/jit/journal/v20/n2/full/2000038a.html. [Accessed: 18-Sep-2015].[5] Effendi, Diana, Pengukuran Dan Perbaikan Kualitas Data Dan Informasi Di Perguruan Tinggi MenggunakanCALDEA Dan EVAMECAL (Studi Kasus X University), Proceeding Seminar Nasional RESASTEK, 2012, pp.TIG.1-TI-G.6.


2021 ◽  
pp. 004912412199553
Author(s):  
Jan-Lucas Schanze

An increasing age of respondents and cognitive impairment are usual suspects for increasing difficulties in survey interviews and a decreasing data quality. This is why survey researchers tend to label residents in retirement and nursing homes as hard-to-interview and exclude them from most social surveys. In this article, I examine to what extent this label is justified and whether quality of data collected among residents in institutions for the elderly really differs from data collected within private households. For this purpose, I analyze the response behavior and quality indicators in three waves of Survey of Health, Ageing and Retirement in Europe. To control for confounding variables, I use propensity score matching to identify respondents in private households who share similar characteristics with institutionalized residents. My results confirm that most indicators of response behavior and data quality are worse in institutions compared to private households. However, when controlling for sociodemographic and health-related variables, differences get very small. These results suggest the importance of health for the data quality irrespective of the housing situation.


Author(s):  
Christopher D O’Connor ◽  
John Ng ◽  
Dallas Hill ◽  
Tyler Frederick

Policing is increasingly being shaped by data collection and analysis. However, we still know little about the quality of the data police services acquire and utilize. Drawing on a survey of analysts from across Canada, this article examines several data collection, analysis, and quality issues. We argue that as we move towards an era of big data policing it is imperative that police services pay more attention to the quality of the data they collect. We conclude by discussing the implications of ignoring data quality issues and the need to develop a more robust research culture in policing.


2014 ◽  
Vol 989-994 ◽  
pp. 1631-1634
Author(s):  
Ping Wang ◽  
Bin Wang

Product data is the source data of product lifecycle in manufacturing enterprise. The quality of product data largely determines the effect of the application of Engineering analysis, simulation assembly and CNC programming work and so on. In order to solve the problems of the existing product data quality, such as validation custom trival, lack of high efficiency and flexibility, etc. The validation method of product data quality (PDQ) based on class was proposed in NX software environment, the representation of validation rules classes of product data quality, validation rules customization and implementation of validation process were introduced in detail in this study. Finally, an application case was employed to verify the practicability and effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document