Obstacle detection system for visually impaired persons: Initial design and usability testing

2013 ◽  
Vol 25 (3) ◽  
pp. 199-205
Author(s):  
A.M. Jubril ◽  
A.A.I. Emechete ◽  
S. Somuyiwa ◽  
V. Iki ◽  
A. Obembe ◽  
...  
Author(s):  
PRATEEK MISHRA ◽  
RAJ KISHOR PAL ◽  
SHIVOM KUSHWAHA ◽  
TUSHAR SRIVASTAVA ◽  
SURESH SHARMA

In This Paper we present a real time domain obstacle detection system for the visually impaired persons to improve their mobility in daily life with the help of obstacle detection sensor installed in their walking stick .System is having a lower cost so it is easily purchasable so it can have a major significance in life of visually impaired persons. This Paper proposes a system to detect any object attached to the floor regardless to their height [1]. Obstacle on the floor in the front of user can be reliably detected in real time using the proposed system implemented by the IR sensor installed on the walk stick of the visually impaired person. Project also contains a navigation system for visually impaired persons to make the life of such persons easier up to some extent. This project is suited for the area where the possibility of blind person is high (like blind school, college)[6]. For transport facility of blind we have first decided the common bus roots of blind then we have placed RF tag to all those buses with unique code. At the second side we have placed RF reader, microcontroller and voice processor. The RF reader receive unique code, microcontroller process this code with defined code, if match found, voice processor get activated and starts speaking bus name, initial destination and final destination. The obstacle detection is also included in the project with voice. The system aims at increasing the mobility of visually impaired people by offering new sensing abilities.


Author(s):  
Adedotun O. Owojori ◽  
Jane O. O. Mebawondu ◽  
Jacob O. Mebawondu

Out of seven billion of the world’s population, two billion and two million that amounts to 31.43% have visual impairment or blindness according to the World Health Organization (WHO) statistics report. Hence, the need to develop a wearable device with reduced size, efficient power usage, and for more comfortability of the visually impaired or blind people. This work aims at designing an obstacle detection system using an ultrasonic sensor interfaced with an Arduino board to track location, alert patient, and send location messages of visually impaired patient to guardians as a feedback mechanism using a GPRS and GSM module. The C programming language was used as the instruction code to interface Arduino device to carry out given tasks. At the design level, the circuit was first tested on Proteus software for simulation purposes before its hardware implementation. The results obtained from the test show the variation of distance as the patient approaches the obstacle, and messages received when a fix was obtained. This design concept would help reduce danger across the way of those with sight defects and allow them to go to familiar places without any aid smoothly.


2016 ◽  
Vol 10 (7) ◽  
pp. JAMDSM0094-JAMDSM0094
Author(s):  
Anuar MOHAMED KASSIM ◽  
Takashi YASUNO ◽  
Hiroshi SUZUKI ◽  
Mohd SHAHRIEEL MOHD ARAS ◽  
Hazriq IZZUAN JAAFAR ◽  
...  

Author(s):  
Haoran Zhang ◽  
Yiming Yang ◽  
Jiahao Zhou ◽  
Atif Shamim

This paper presents a compact and wearable frequency-modulated continuous-wave (FMCW) radar on a semi-flexible printed circuit board (PCB) for an anti-collision system. This can enable visually impaired people to perceive their environment better and more safely in their everyday lives. In the proposed design, a multiple-input multiple-output (MIMO) antenna array with four receivers (RXs) and three transmitters (TXs) has been designed to achieve obstacle-detection ability in both horizontal and vertical planes through a specific geometrical configuration. Operating at 76–81 GHz, an aperture coupled wide-beam patch antenna with two parasitic patches is proposed for each channel of RXs and TXs. The fast Fourier transform (FFT) algorithm has been implemented in the radar chip AWR1843 for intermediate frequency (IF) signals to generate a range-Doppler map and search precise target angles in high sensitivity. The complete system, which includes both the MIMO antenna array and the radar chip circuit, is utilized on a six-layer semi-flexible PCB to ensure compactness and ease in wearability. Field testing of the complete system has been performed, and an obstacle-detection range of 7 m (for humans) and 19 m (for larger objects) has been obtained. A wide angular detection range of 64-degree broadside view (±32°) has also been achieved. A voice module has also been integrated to deliver the obstacle’s range and angle information to visually impaired persons.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012030
Author(s):  
F S Kamaruddin ◽  
N H Mahmood ◽  
M A Abdul Razak ◽  
N A Zakaria

Abstract Visually impaired people usually have a lot of difficulties involved in interacting with their environment. Physical movement is a major challenge for them, because it can be tricky to make a distinction about where they are and how they can move from one place to another. In this project, smart assistive shoes with Internet of Things (IoT) implementation is designed. These shoes are equipped with ultrasonic sensors and vibration motors that can warn users about obstacles. Next, the IoT system is implemented using Adafruit IO and If This, Then That (IFTTT) to transfer data between Google Assistant and buzzer for shoes position finder purposes. NodeMCU allows the buzzer on shoes to be controlled by the Internet using its WiFi module which is connected to the mobile phone hotspots. As a result, shoes with an obstacle detection system which can detect obstacles within 20 cm distance and shoes position finder using Google Assistant are designed. In conclusion, hopefully these shoes will become one of the alternatives to aid the independent movement of the visually impaired people in the future.


Sign in / Sign up

Export Citation Format

Share Document