scholarly journals Evaluation of an artificial intelligence (AI) system to detect tuberculosis on chest X-ray at a pilot active screening project in Guangdong, China in 2019

2021 ◽  
pp. 1-10
Author(s):  
Qinghua Liao ◽  
Huiying Feng ◽  
Yuan Li ◽  
Xiaoyu Lai ◽  
Fangjing Zhou ◽  
...  

BACKGROUND: Although computer-aided detection (CAD) software employed with Artificial Intelligence (AI) system has been developed aiming to assist Tuberculosis (TB) triage, screening, and diagnosis, its clinical performance for tuberculosis screening remains unknown. OBJECTIVE: To evaluate performance of an CAD software for detecting TB on chest X-ray images at a pilot active TB screening project. METHODS: A CAD software scheme employed with AI was used to screen chest X ray images of participants and produce probability scores of cases being positive for TB. CAD-generated TB detection scores were compared with on-site and senior radiologists via several performance evaluation indices including area under the ROC curves (AUC), specificity, sensitive, and positive predict value. Pycharm CE and SPSS statistics software packages were used for data analysis. RESULTS: Among 2,543 participants, eight TB patients were identified from this screening pilot program. The AI-based CAD system outperformed the onsite (AUC = 0.740) and senior radiologists (AUC = 0.805) either using thresholds of 30% (AUC = 0.978) and 50% (AUC = 0.859) when taking the final diagnosis as the ground truth. CONCLUSIONS: The AI-based CAD software successfully detects all TB patients as identified from this study at a threshold of 30% . It demonstrates feasibility and easy accessibility to carry out large scale TB screening using this CAD software equipped in medical vans with chest X-ray imaging machine.

1978 ◽  
Vol 17 (03) ◽  
pp. 157-161 ◽  
Author(s):  
F. T. De Dombal ◽  
Jane C. Horrocks

This paper uses simple receiver operating characteristic (ROC) curves (i) to study the effect of varying computer confidence of threshold levels and (ii) to evaluate clinical performance in the diagnosis of acute appendicitis. Over 1300 patients presenting to five centres with abdominal pain of short duration were studied in varying detail. Clinical and computer-aided diagnostic predictions were compared with the »final« diagnosis. From these studies it is concluded the simplistic setting of a 50/50 confidence threshold for the computer program is as »good« as any other. The proximity of a computer-aided system changed clinical behaviour patterns; a higher overall performance level was achieved and clinicians performance levels became associated with the »mildly conservative« end of the computers ROC curve. Prior forecasts of over-confidence or ultra-caution amongst clinicians using the computer-aided system have not been fulfilled.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Aysen Degerli ◽  
Mete Ahishali ◽  
Mehmet Yamac ◽  
Serkan Kiranyaz ◽  
Muhammad E. H. Chowdhury ◽  
...  

AbstractComputer-aided diagnosis has become a necessity for accurate and immediate coronavirus disease 2019 (COVID-19) detection to aid treatment and prevent the spread of the virus. Numerous studies have proposed to use Deep Learning techniques for COVID-19 diagnosis. However, they have used very limited chest X-ray (CXR) image repositories for evaluation with a small number, a few hundreds, of COVID-19 samples. Moreover, these methods can neither localize nor grade the severity of COVID-19 infection. For this purpose, recent studies proposed to explore the activation maps of deep networks. However, they remain inaccurate for localizing the actual infestation making them unreliable for clinical use. This study proposes a novel method for the joint localization, severity grading, and detection of COVID-19 from CXR images by generating the so-called infection maps. To accomplish this, we have compiled the largest dataset with 119,316 CXR images including 2951 COVID-19 samples, where the annotation of the ground-truth segmentation masks is performed on CXRs by a novel collaborative human–machine approach. Furthermore, we publicly release the first CXR dataset with the ground-truth segmentation masks of the COVID-19 infected regions. A detailed set of experiments show that state-of-the-art segmentation networks can learn to localize COVID-19 infection with an F1-score of 83.20%, which is significantly superior to the activation maps created by the previous methods. Finally, the proposed approach achieved a COVID-19 detection performance with 94.96% sensitivity and 99.88% specificity.


2020 ◽  
Vol 112 (5) ◽  
pp. S50
Author(s):  
Zachary Eller ◽  
Michelle Chen ◽  
Jermaine Heath ◽  
Uzma Hussain ◽  
Thomas Obisean ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 411-424 ◽  
Author(s):  
José Daniel López-Cabrera ◽  
Rubén Orozco-Morales ◽  
Jorge Armando Portal-Diaz ◽  
Orlando Lovelle-Enríquez ◽  
Marlén Pérez-Díaz

2021 ◽  
Author(s):  
Ali Mohammad Alqudah ◽  
Shoroq Qazan ◽  
Ihssan S. Masad

Abstract BackgroundChest diseases are serious health problems that threaten the lives of people. The early and accurate diagnosis of such diseases is very crucial in the success of their treatment and cure. Pneumonia is one of the most widely occurred chest diseases responsible for a high percentage of deaths especially among children. So, detection and classification of pneumonia using the non-invasive chest x-ray imaging would have a great advantage of reducing the mortality rates.ResultsThe results showed that the best input image size in this framework was 64 64 based on comparison between different sizes. Using CNN as a deep features extractor and utilizing the 10-fold methodology the propose artificial intelligence framework achieved an accuracy of 94% for SVM and 93.9% for KNN, a sensitivity of 93.33% for SVM and 93.19% for KNN and a specificity of 96.68% for SVM and 96.60% for KNN.ConclusionsIn this study, an artificial intelligence framework has been proposed for the detection and classification of pneumonia based on chest x-ray imaging with different sizes of input images. The proposed methodology used CNN for features extraction that were fed to two different types of classifiers, namely, SVM and KNN; in addition to the SoftMax classifier which is the default CNN classifier. The proposed CNN has been trained, validated, and tested using a large dataset of chest x-ray images contains in total 5852 images.


Author(s):  
José Daniel López-Cabrera ◽  
Rubén Orozco-Morales ◽  
Jorge Armando Portal-Díaz ◽  
Orlando Lovelle-Enríquez ◽  
Marlén Pérez-Díaz

Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2206
Author(s):  
Dana Li ◽  
Lea Marie Pehrson ◽  
Carsten Ammitzbøl Lauridsen ◽  
Lea Tøttrup ◽  
Marco Fraccaro ◽  
...  

Our systematic review investigated the additional effect of artificial intelligence-based devices on human observers when diagnosing and/or detecting thoracic pathologies using different diagnostic imaging modalities, such as chest X-ray and CT. Peer-reviewed, original research articles from EMBASE, PubMed, Cochrane library, SCOPUS, and Web of Science were retrieved. Included articles were published within the last 20 years and used a device based on artificial intelligence (AI) technology to detect or diagnose pulmonary findings. The AI-based device had to be used in an observer test where the performance of human observers with and without addition of the device was measured as sensitivity, specificity, accuracy, AUC, or time spent on image reading. A total of 38 studies were included for final assessment. The quality assessment tool for diagnostic accuracy studies (QUADAS-2) was used for bias assessment. The average sensitivity increased from 67.8% to 74.6%; specificity from 82.2% to 85.4%; accuracy from 75.4% to 81.7%; and Area Under the ROC Curve (AUC) from 0.75 to 0.80. Generally, a faster reading time was reported when radiologists were aided by AI-based devices. Our systematic review showed that performance generally improved for the physicians when assisted by AI-based devices compared to unaided interpretation.


2020 ◽  
pp. 084653712090885
Author(s):  
Fatemeh Homayounieh ◽  
Subba R. Digumarthy ◽  
Jennifer A. Febbo ◽  
Sherief Garrana ◽  
Chayanin Nitiwarangkul ◽  
...  

Purpose: To assess and compare detectability of pneumothorax on unprocessed baseline, single-energy, bone-subtracted, and enhanced frontal chest radiographs (chest X-ray, CXR). Method and Materials: Our retrospective institutional review board–approved study included 202 patients (mean age 53 ± 24 years; 132 men, 70 women) who underwent frontal CXR and had trace, moderate, large, or tension pneumothorax. All patients (except those with tension pneumothorax) had concurrent chest computed tomography (CT). Two radiologists reviewed the CXR and chest CT for pneumothorax on baseline CXR (ground truth). All baseline CXR were processed to generate bone-subtracted and enhanced images (ClearRead X-ray). Four radiologists (R1-R4) assessed the baseline, bone-subtracted, and enhanced images and recorded the presence of pneumothorax (side, size, and confidence for detection) for each image type. Area under the curve (AUC) was calculated with receiver operating characteristic analyses to determine the accuracy of pneumothorax detection. Results: Bone-subtracted images (AUC: 0.89-0.97) had the lowest accuracy for detection of pneumothorax compared to the baseline (AUC: 0.94-0.97) and enhanced (AUC: 0.96-0.99) radiographs ( P < .01). Most false-positive and false-negative pneumothoraces were detected on the bone-subtracted images and the least numbers on the enhanced radiographs. Highest detection rates and confidence were noted for the enhanced images (empiric AUC for R1-R4 0.96-0.99). Conclusion: Enhanced CXRs are superior to bone-subtracted and unprocessed radiographs for detection of pneumothorax. Clinical Relevance/Application: Enhanced CXRs improve detection of pneumothorax over unprocessed images; bone-subtracted images must be cautiously reviewed to avoid false negatives.


2020 ◽  
pp. 102490792094899
Author(s):  
Kwok Hung Alastair Lai ◽  
Shu Kai Ma

Background: Artificial intelligence is becoming an increasingly important tool in different medical fields. This article aims to evaluate the sensitivity and specificity of artificial intelligence trained with Microsoft Azure in detecting pneumothorax. Methods: A supervised learning artificial intelligence is trained with a collection of X-ray images of pneumothorax from National Institutes of Health chest X-ray dataset online. A subset of the image dataset focused on pneumothorax is used in training. Two artificial intelligence programs are trained with different numbers of training images. After the training, a collection of pneumothorax X-ray images from patient attending emergency department is retrieved through the Clinical Data Analysis & Reporting System. In total, 115 pneumothorax patients and 60 normal inpatients are recruited. The pneumothorax chest X-ray and the resolution chest X-ray of the above patient group and a collection of normal chest X-ray from inpatients without pneumothorax will be retrieved, and these three sets of images will then undergo testing by artificial intelligence programs to give a probability of being a pneumothorax X-ray. Results: The sensitivity of artificial intelligence-one is 33.04%, and the specificity is at least 61.74%. The sensitivity of artificial intelligence-two is 46.09%, and the specificity is at least 71.30%. The dramatic improvement of 46.09% in sensitivity and improvement of 15.48% in specificity by addition of around 1000 X-ray images is encouraging. The mean improvement of AI-two over AI-one is 19.7% increase in probability difference. Conclusions: We should not rely on artificial intelligence in diagnosing pneumothorax X-ray solely by our models and more training should be expected to explore its full function.


Sign in / Sign up

Export Citation Format

Share Document