Difference in Muscle Activity of Respiratory Muscle During Maximum Inspiration and Expiration Due to Position Change and Tool Use

2021 ◽  
Vol 9 (1) ◽  
pp. 1-5
Author(s):  
Keun-Jo Kim ◽  
Zang Rong ◽  
Dong-hyeok Jo ◽  
Ju-eun Jeong ◽  
Gyeong-gyu Kim ◽  
...  
1980 ◽  
Vol 49 (4) ◽  
pp. 601-608 ◽  
Author(s):  
B. Gothe ◽  
N. S. Cherniack

We examined the effects of expiratory resistive loads of 10 and 18 cmH2O.l-1.s in healthy subjects on ventilation and occlusion pressure responses to CO2, respiratory muscle electromyogram, pattern of breathing, and thoracoabdominal movements. In addition, we compared ventilation and occlusion pressure responses to CO2 breathing elicited by breathing through an inspiratory resistive load of 10 cmH2O.l-1.s to those produced by an expiratory load of similar magnitude. Both inspiratory and expiratory loads decreased ventilatory responses to CO2 and increased the tidal volume achieved at any given level of ventilation. Depression of ventilatory responses to Co2 was greater with the larger than with the smaller expiratory load, but the decrease was in proportion to the difference in the severity of the loads. Occlusion pressure responses were increased significantly by the inspiratory resistive load but not by the smaller expiratory load. However, occlusion pressure responses to CO2 were significantly larger with the greater expiratory load than control. Increase in occlusion pressure observed could not be explained by changes in functional residual capacity or chemical drive. The larger expiratory load also produced significant increases in electrical activity measured during both inspiration and expiration. These results suggest that sufficiently severe impediments to breathing, even when they are exclusively expiratory, can enhance inspiratory muscle activity in conscious humans.


1965 ◽  
Vol 32 (2) ◽  
pp. 185-191 ◽  
Author(s):  
Michael S. Hoshiko ◽  
Kenneth W. Berger

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Victoria N. Jensen ◽  
Azl Saeed ◽  
Kari A. Seedle ◽  
Sarah Marie Turner ◽  
Steven A. Crone

2018 ◽  
Vol 129 (3) ◽  
pp. 490-501 ◽  
Author(s):  
Jonne Doorduin ◽  
Lisanne H. Roesthuis ◽  
Diana Jansen ◽  
Johannes G. van der Hoeven ◽  
Hieronymus W. H. van Hees ◽  
...  

Abstract What We Already Know about This Topic What This Article Tells Us That Is New Background Respiratory muscle weakness in critically ill patients is associated with difficulty in weaning from mechanical ventilation. Previous studies have mainly focused on inspiratory muscle activity during weaning; expiratory muscle activity is less well understood. The current study describes expiratory muscle activity during weaning, including tonic diaphragm activity. The authors hypothesized that expiratory muscle effort is greater in patients who fail to wean compared to those who wean successfully. Methods Twenty adult patients receiving mechanical ventilation (more than 72 h) performed a spontaneous breathing trial. Tidal volume, transdiaphragmatic pressure, diaphragm electrical activity, and diaphragm neuromechanical efficiency were calculated on a breath-by-breath basis. Inspiratory (and expiratory) muscle efforts were calculated as the inspiratory esophageal (and expiratory gastric) pressure–time products, respectively. Results Nine patients failed weaning. The contribution of the expiratory muscles to total respiratory muscle effort increased in the “failure” group from 13 ± 9% at onset to 24 ± 10% at the end of the breathing trial (P = 0.047); there was no increase in the “success” group. Diaphragm electrical activity (expressed as the percentage of inspiratory peak) was low at end expiration (failure, 3 ± 2%; success, 4 ± 6%) and equal between groups during the entire expiratory phase (P = 0.407). Diaphragm neuromechanical efficiency was lower in the failure versus success groups (0.38 ± 0.16 vs. 0.71 ± 0.36 cm H2O/μV; P = 0.054). Conclusions Weaning failure (vs. success) is associated with increased effort of the expiratory muscles and impaired neuromechanical efficiency of the diaphragm but no difference in tonic activity of the diaphragm.


PEDIATRICS ◽  
1988 ◽  
Vol 81 (3) ◽  
pp. 399-403
Author(s):  
Jeffrey Perlman ◽  
Bradley Thach

A variable fluctuating pattern of arterial BP often precedes intraventricular hemorrhage in mechanically ventilated preterm infants. To learn more about the origin of this pattern, arterial BP and respiratory muscle activity were studied in five intubated premature infants who were at high risk for intraventricular hemorrhage. We monitored esophageal pressure, gastric pressure, and arterial BP. Consistent findings were: (1) arterial BP fluctuations have the same frequency and direction of change as esophageal and gastric pressure changes associated with spontaneous breathing (R ranged from .93 to .98, P < .001); (2) spontaneous apneic pauses were accompanied by sudden and complete cessation of arterial BP fluctuations; (3) large "cough-like" fluctuations in esophageal and gastric pressures, seen in all infants, were associated with the largest fluctuations in arterial BP; (4) cutaneous stimulation had negligible effect on fluctuation in arterial BP provided no change in esophageal and gastric pressures occurred; (5) the effects of change in esophageal and gastric pressures on arterial BP were nearly simultaneous (0.05 to 0.25 second latency); (6) respirator pressure fluctuations had negligible effects on the fluctuations in arterial BP. These data suggest that the fluctuations in arterial BP are directly related to respiratory muscle activity and are most consistent with the familiar pulsus paradoxus that occurs in various other cardiorespiratory diseases.


1994 ◽  
Vol 76 (5) ◽  
pp. 2015-2025 ◽  
Author(s):  
B. K. Erickson ◽  
H. V. Forster ◽  
T. F. Lowry ◽  
L. G. Pan ◽  
M. J. Korducki ◽  
...  

The objective of the present study was to determine whether lung and diaphragm afferents contribute to the changes in respiratory muscle activity when end-expiratory lung volume (EELV) is changed in ponies. We studied the responses of the diaphragm and the transversus abdominis (TA) muscles to passive increases in EELV in awake intact (I), diaphragm-deafferented (DD), pulmonary vagal- (hilar nerve) denervated (HND), and DD + HND ponies. Negative pressure of -10 or -20 cmH2O applied around the ponies′ torsos [positive transrespiratory (TR) pressure] increased (P < 0.05) EELV in all ponies; the increases were more (P < 0.05) in HND and less (P < 0.05) in DD than in I ponies. In I ponies, positive TR pressure increased (P < 0.05) the rate of rise of the integrated diaphragmatic electromyogram (EMG), reflecting increased drive to the muscle. This increase was less (P < 0.05) in DD and HND than in I ponies. In DD + HND ponies, there was no significant (P > 0.10) change in drive to the diaphragm during positive TR pressure. In I ponies, positive TR pressure increased (P < 0.05) the duration and mean activity of the TA EMG. In HND and DD + HND ponies, the TA EMG was not altered by positive TR pressure. I and DD ponies decreased (P < 0.05) breathing frequency but maintained tidal volume (VT) during positive TR pressure. HND and DD+HND ponies increased breathing frequency (P < 0.05) and decreased (P < 0.05) VT during positive TR pressure. We conclude that, during positive TR pressure when the diaphragm is presumably at a mechanical disadvantage, diaphragm and vagal afferents mediate increased drive to the diaphragm to prevent VT from decreasing. In addition, during positive TR pressure, vagal afferents mediate an increase in duration of TA activity, which minimizes the increase in EELV.


2020 ◽  
Vol 65 (9) ◽  
pp. 1285-1294
Author(s):  
Jéssica Danielle Medeiros da Fonsêca ◽  
Vanessa Regiane Resqueti ◽  
Kadja Benício ◽  
Valéria Soraya de Farias Sales ◽  
Luciana Fontes Silva da Cunha Lima ◽  
...  

1988 ◽  
Vol 64 (6) ◽  
pp. 2314-2317 ◽  
Author(s):  
J. Mead ◽  
M. B. Reid

We observed striking differences in respiratory muscle electromyogram activity when active expirations were interrupted in rapid succession, depending on the mode of interruption. When the interruptions were produced at the level of the glottis (utterances, uh-uh-uh-uh, at 5–8 Hz) there were synchronous bursts of activity from expiratory muscles in all three subjects during the periods of no flow and rapid bursts of diaphragmatic activity during the flow phases in one subject. In contrast, when similarly rapid interruptions of active expirations were produced with the tongue on a mouthpiece (utterance, te-te-te-te) or with an external valve, no synchronous bursts were observed. Since all interruptions would have been mechanically similar at expiratory muscular and pulmonary levels, we reasoned that the bursts with glottic interruptions were either programmed centrally or driven reflexly at the laryngeal level.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Tom Schepens ◽  
Koen Janssens ◽  
Sabine Maes ◽  
Davina Wildemeersch ◽  
Jurryt Vellinga ◽  
...  

Abstract Background The use of neostigmine after neuromuscular blockade (NMB) has been associated with postoperative respiratory complications. In previous studies, we found lower diaphragmatic activity after neostigmine reversal of NMB, compared to sugammadex. It is still unclear whether the adequate use of neostigmine guarantees normal respiratory muscle function after NMB. In this study, we wanted to assess the effect of commonly used degrees of NMB and their possible reversal strategies on respiratory muscle activity after the return of normal neuromuscular transmission. Methods This is a randomized, controlled, parallel-group, single-centre, double-blind study in patients scheduled for intracranial surgery at a tertiary academic hospital in Belgium. All participants received target controlled propofol/remifentanil anesthesia and were randomized into one of five groups, receiving either a shallow NMB with no reversal (shallow/saline), a shallow NMB with sugammadex reversal (shallow/sugammadex), a moderate NMB with neostigmine reversal (moderate/neostigmine), a moderate NMB with sugammadex reversal (moderate/sugammadex), or a deep NMB with sugammadex reversal (deep/sugammadex). Primary and secondary outcome parameters were diaphragm and intercostal electromyographic (EMG) activity at the moment of resumed spontaneous breathing activity, defined as a maximal interval of 10 min after the first spontaneous breath. Results For the five groups, a total of 55 patients could be included in the final analysis. Median time of spontaneous breathing analyzed was 5 min (IQR 3–9.5 min). Both the moderate/sugammadex and the moderate/neostigmine groups had lower levels of diaphragm EMG compared to the shallow/sugammadex group. The moderate/neostigmine group had lower levels of intercostal EMG activity compared to the shallow/saline group. Conclusions In this study, the depth of neuromuscular blockade and type of reversal strategy impacts respiratory muscle activity at the moment of resumed spontaneous breathing and recovery of neuromuscular blockade. Both groups that received moderate NMB had lower levels of diaphragm EMG, compared to the shallow NMB group with sugammadex reversal. Compared to the shallow NMB group with no reversal, the moderate NMB with neostigmine reversal group had lower intercostal EMG activity. Trial registration Clinicaltrials.gov NCT01962298 on October 9, 2013 and EudraCT 2013–001926-25 on October 10, 2013.


Sign in / Sign up

Export Citation Format

Share Document