scholarly journals Establishing the correlation of the vertical and horizontal passive failure pressure in front of constructed tbm tunnels face in sand

Author(s):  
Anh Tuan Nguyen ◽  
Van Dung Tran

The paper aims to investigate the relationship between factors which have the impacts on the tunnel and the ground and establish formulas to calculate the correlation of the passive failure pressure in front of tunnel face in the vertical and horizontal directions by using the Finite Element Method (FEM).

2013 ◽  
Vol 395-396 ◽  
pp. 55-59 ◽  
Author(s):  
Wei Zeng ◽  
Yi Jiang

The failure analysis of a fly through frangible canister cover is studied based on transient dynamics via the finite element method. The cover, which is fabricated with five plan-liked parts, is cohesively bonded together forming several weak paths. Five test specimens are designed according to the length of bonded fiber cloth. The cover is subjected to an impulsive blast and the failure process is obtained and analyzed. The failure pressure and time are determined at different cloth length. The result shows that the failure pressure and the corresponding time rise as the length of bonding layer increases.


1973 ◽  
Vol 40 (1) ◽  
pp. 204-208
Author(s):  
R. W. McLay ◽  
E. M. Buturla

An optimization problem involving the thermal deflections of two parallel circular disks is examined. Error bounds are developed for both the finite-element solution and the optimization problem. The relationship between the errors is illustrated in a single bound.


2016 ◽  
Vol 4 (1) ◽  
pp. 0-0
Author(s):  
Олег Ещенко ◽  
Oleg Eshchenko ◽  
Игорь Болгов ◽  
Igor Bolgov

In this article an example of Tuapse refinery examines the relationship deformations tank foundation and pile retaining structures at various embodiments, the construction of both objects. The finite element method determined the effect of tech-energy building by the amount of heel tank. Advice on selecting the best option erection paired structures


2011 ◽  
Vol 337 ◽  
pp. 236-241 ◽  
Author(s):  
Xin Hua Huang ◽  
Hua Xiang ◽  
Xin Cun Zhuang ◽  
Zhen Zhao

Nowadays, the compound fine-blanking forming process is one of the most important processes to produce complicate multifunctional parts without subsequent machining. However, the big die-roll occurs in the sharp area is a common problem in this process. In this paper, the method with negative punch-die clearance was proposed to solve this problem by comparing three feasible plans. In addition, the influence on the process with different value of the negative punch-die clearance was studied by the finite element method (FEM). The results of this study verified that the process with suitable value of the negative punch-die clearance can result in significant decrease of the die-roll size. The relationship between the material flow near the region of die-roll and the punch-die clearance was also clarified.


2006 ◽  
Vol 505-507 ◽  
pp. 745-750 ◽  
Author(s):  
Yuan Chuan Hsu ◽  
Tung Sheng Yang ◽  
S.Y. Sung ◽  
Sheng Yi Chang

In this study, the predictive model of friction coefficient using cylindrical compression was constructed through combining the finite element method and neutral networks. Namely, the related data of the materials characters, cylinder compression bulging, and how they were associated with friction coefficient was obtained by the finite element method. Based on those analysis data, the relationship model, reflecting the relationship among the materials characters such as strength coefficient and strain-hardening exponent, the compression bulging such as reduction height, expanding in upper ending, expanding in bottom ending, maximum expanding in outside diameter and the friction coefficient in workpiece/die interface, was constructed. Finally, the cross verification between finite element analysis, prediction by neutral network model and the experiments of cylindrical compression testing and ring compression testing are repeatedly checked to ensure the accuracy and reliability of the constructed model. Results of the current study indicate that their errors are extremely limited, and the developed predictive system is reliable and feasible.


2011 ◽  
Vol 105-107 ◽  
pp. 1134-1137
Author(s):  
Yan Yun Luo ◽  
Hu Zhang ◽  
Yan Liu

The paper presents a dynamic computational model and field test for analyzing the relationship between the rail natural frequencies and the longitudinal temperature stress by means of the finite element method. The essay use the infinite Timoshenko beam as the plane model to simulate continuous welded rail track structure and the rail model by means of the finite element method in order to its unit as a division of space elastomer. The test uses vertical incentive and horizontal incentive to encourage continuous welded rail track structure to get the rail natural frequencies. The measured data and the result of finite element analysis are compared, finds the results are consistent. The paper not only investigates the relationship between the rail’s dynamic characteristics and the longitudinal stress, but also provides a feasible method for test longitudinal stress of continuous welded rail track.


2021 ◽  
Vol 10 (5) ◽  
pp. 334
Author(s):  
Haibo Chen ◽  
Xin Chen

Trajectory compression is an efficient way of removing noise and preserving key features in location-based applications. This paper focuses on the dynamic compression of trajectory in memory, where the compression accuracy of trajectory changes dynamically with the different application scenarios. Existing methods can achieve this by adjusting the compression parameters. However, the relationship between the parameters and compression accuracy of most of these algorithms is considerably complex and varies with different trajectories, which makes it difficult to provide reasonable accuracy. We propose a novel trajectory compression algorithm that is based on the finite element method, in which the trajectory is taken as an elastomer to compress as a whole by elasticity theory, and trajectory compression can be thought of as deformation under stress. The compression accuracy can be determined by the stress size that is applied to the elastomer. When compared with the existing methods, the experimental results show that our method can provide more stable, data-independent compression accuracy under the given stress parameters, and with reasonable performance.


2020 ◽  
pp. 9-22
Author(s):  
V.L. Kiselev ◽  
A. S. Pronin

Using the finite element method and CAD SolidWorks Simulation, the relationship between the geometric parameters of workpieces and the error in processing flat surfaces of levers caused by elastic deformations of the workpiece due to the application of holding force is established. In this paper, we developed a method for determining the error of processing flat surfaces that occurs from fixing, compiled a model for determining the error by the finite element method, and calculated the error of processing flat surfaces that occurs from fixing for workpieces with different geometric parameters. As a result of the study, the relationship between the value of the center distance of workpieces and the error in processing flat surfaces of levers caused by elastic deformations of the workpiece due to the application of holding forces was determined.


Sign in / Sign up

Export Citation Format

Share Document