scholarly journals FERRITATIVE WASTEWATER TREATMENT FROM CHROMIUM (VI) COMPOUNDS USING ELECTROMAGNETIC PULSE ACTIVATION

Author(s):  
Dmitry Pakhomov ◽  
Gennadii Kochetov ◽  
Dmitry Samchenko

Issues related to the prospects of implementing the latest technologies aimed at achieving energy efficiency in the field of water supply, resource conservation in material-intensive processes at industrial enterprises and prevention of environmental pollution are considered. A study of ferritative wastewater treatment from chromium compounds, which belong to the first class of danger. The efficiency of thermal and electromagnetic pulse activation of the process is compared. Appropriate experimental setups were developed and the main parameters of the purification process were studied and determined: the ratio of iron (II) and chromium (VI) ions, magnetic field strength, frequency of electromagnetic pulses, ferritization process duration, temperature and pH of the reaction mixture. The expediency of using electromagnetic pulse activation of the reaction mixture by passing electromagnetic pulses through the reaction mixture has been studied and scientifically substantiated. Rational values ​​of the strength and frequency of the electromagnetic field when using this method of activation, which are 0.01 - 0.14 Tl and 1 Hz, respectively, as well as the ratio of concentrations of heavy metal ions Fe2 + / Cr6 + = 10/1 for washing water chrome plating line . It is shown that purified water meets the requirements of category 1 when reused in production. The results of X-ray diffraction analysis of ferritization sediments showed that stable crystalline phases, such as chromium ferrites and magnetite, are formed with increasing magnetic field strength. The chemical resistance of sludge allows them to be safely disposed of. It is established that this method of electromagnetic pulse activation is not inferior to thermal, and the technical and economic calculations confirmed a significant reduction in industrial costs in its application

1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


1998 ◽  
Vol 08 (PR2) ◽  
pp. Pr2-579-Pr2-582 ◽  
Author(s):  
S. Tumanski ◽  
M. Stabrowski

2014 ◽  
Vol 6 (2) ◽  
pp. 1178-1190
Author(s):  
A. JOHN PETER ◽  
Ada Vinolin

Simultaneous effects of magnetic field, pressure and temperature on the exciton binding energies are found in a 9.0 1.0 6.0 4.0 GaAs P / GaAs P quantum dot. Numerical calculations are carried out taking into consideration of spatial confinement effect. The cylindrical system is taken in the present problem with the strain effects. The electronic properties and the optical properties are found with the combined effects of magnetic field strength, hydrostatic pressure and temperature values. The exciton binding energies and the nonlinear optical properties are carried out taking into consideration of geometrical confinement and the external perturbations.Compact density approach is employed to obtain the nonlinear optical properties. The optical rectification coefficient is obtained with the photon energy in the presence of pressure, temperature and external magnetic field strength. Pressure and temperature dependence on nonlinear optical susceptibilities of generation of second and third order harmonics as a function of incident photon energy are brought out in the influence of magnetic field strength. The result shows that the electronic and nonlinear optical properties are significantly modified by the applications of external perturbations in a 9.0 1.0 6.0 4.0 GaAs P / GaAs P quantum dot.


1988 ◽  
Vol 12 (2) ◽  
pp. 89-96 ◽  
Author(s):  
R. Lufkin ◽  
M. Anselmo ◽  
J. Crues ◽  
W. Smoker ◽  
W. Hanafee

Radiology ◽  
1984 ◽  
Vol 151 (1) ◽  
pp. 127-133 ◽  
Author(s):  
L E Crooks ◽  
M Arakawa ◽  
J Hoenninger ◽  
B McCarten ◽  
J Watts ◽  
...  

1987 ◽  
Vol 107 (1) ◽  
pp. 50-58 ◽  
Author(s):  
Takayoshi Nakata ◽  
Yoshihiro Kawase ◽  
Masanori Nakano

Sign in / Sign up

Export Citation Format

Share Document