scholarly journals Medial Vestibular Nucleus

2020 ◽  
Author(s):  
1993 ◽  
Vol 93 (2) ◽  
Author(s):  
A.R. Johnston ◽  
Bridin Murnion ◽  
D.S. McQueen ◽  
M.B. Dutia

2002 ◽  
Vol 12 (1) ◽  
pp. 1-14
Author(s):  
Yizhe Sun ◽  
Donald A. Godfrey ◽  
Allan M. Rubin

Extracellular single unit recordings were made from regularly discharging medial vestibular nucleus neurons in brain slices from control rats and from rats surviving 7 days after bilateral transection of the inferior cerebellar peduncle. Decreases in firing rate during perfusion with the Îş-aminobutyric acid (GABA) agonists, muscimol (GABA A ) and baclofen (GABA B ), were greater in lesioned rats than in control rats. For the grouped data, the half-maximally-effective concentrations of muscimol and baclofen were 3.2 µM, as compared with 19.6 µM for control, and 0.8 µM, as compared with 2.7 µM for control, respectively. The antagonists bicuculline (GABA A ) and 2-OH-saclofen (GABA B ) only minimally affected the spontaneous firing rates of neurons in lesioned rats, significantly less than in control rats. The data suggest that the decreases of endogenous GABA levels in the medial vestibular nucleus after inferior cerebellar peduncle transection are accompanied by up-regulation of GABA A and, to a lesser extent, GABA B receptors.


2007 ◽  
Vol 16 (4-5) ◽  
pp. 171-177
Author(s):  
Adrian Lozada ◽  
Kaj Karlstedt ◽  
Pertti Panula ◽  
Antti A. Aarnisalo

In the auditory periphery, GDNF has been shown to have a trophic effect to spiral ganglion neurons, both during development and in adult animals. We have studied the effect of unilateral labyrinthectomy (UL) on protein levels and expression of GDNF multicomponent receptor complex: the ret tyrosine kinase and coreceptor GFRα-1 in the medial vestibular nucleus of the adult rat. GFRα-1 protein levels display an increasing trend in ipsilateral medial vestibular nucleus culminating at 48 h post UL. On the other hand, GFRα-1 mRNA expression levels in ipsi- and contralateral medial vestibular nucleus show a steadily decreasing trend that is significant at 1 week post-lesion. Protein levels for c-Ret isoforms also show an initial bilateral decreasing trend that ceases at 48 h in ipsilateral medial vestibular nucleus but persists on the contralateral side. c-Ret mRNA expression levels show a significant decrease at 4 h post UL followed by another significant decrease 1 week post UL. Our data would suggest that neurotrophins belonging to the GDNF family are involved in this model of post-lesional CNS plasticity.


2002 ◽  
Vol 323 (3) ◽  
pp. 234-238 ◽  
Author(s):  
Shino Inoue ◽  
Taizo Kita ◽  
Toshiaki Yamanaka ◽  
Yohichi Ogawa ◽  
Toshikatsu Nakashima ◽  
...  

1992 ◽  
Vol 68 (1) ◽  
pp. 319-332 ◽  
Author(s):  
J. L. McFarland ◽  
A. F. Fuchs

1. Monkeys were trained to perform a variety of horizontal eye tracking tasks designed to reveal possible eye movement and vestibular sensitivities of neurons in the medulla. To test eye movement sensitivity, we required stationary monkeys to track a small spot that moved horizontally. To test vestibular sensitivity, we rotated the monkeys about a vertical axis and required them to fixate a target rotating with them to suppress the vestibuloocular reflex (VOR). 2. All of the 100 units described in our study were recorded from regions of the medulla that were prominently labeled after injections of horseradish peroxidase into the abducens nucleus. These regions include the nucleus prepositus hypoglossi (NPH), the medial vestibular nucleus (MVN), and their common border (the “marginal zone”). We report here the activities of three different types of neurons recorded in these regions. 3. Two types responded only during eye movements per se. Their firing rates increased with eye position; 86% had ipsilateral “on” directions. Almost three quarters (73%) of these medullary neurons exhibited a burst-tonic discharge pattern that is qualitatively similar to that of abducens motoneurons. There were, however, quantitative differences in that these medullary burst-position neurons were less sensitive to eye position than were abducens motoneurons and often did not pause completely for saccades in the off direction. The burst of medullary burst position neurons preceded the saccade by an average of 7.6 +/- 1.7 (SD) ms and, on average, lasted the duration of the saccade. The number of spikes in the burst was well correlated with saccade size. The second type of eye movement neuron displayed either no discernible burst or an inconsistent one for on-direction saccades and will be referred to as medullary position neurons. Neither the burst-position nor the position neurons responded when the animals suppressed the VOR; hence, they displayed no vestibular sensitivity. 4. The third type of neuron was sensitive to both eye movement and vestibular stimulation. These neurons increased their firing rates during horizontal head rotation and smooth pursuit eye movements in the same direction; most (76%) preferred ipsilateral head and eye movements. Their firing rates were approximately in phase with eye velocity during sinusoidal smooth pursuit and with head velocity during VOR suppression; on average, their eye velocity sensitivity was 50% greater than their vestibular sensitivity. Sixty percent of these eye/head velocity cells were also sensitive to eye position. 5. The NPH/MVN region contains many neurons that could provide an eye position signal to abducens neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


1983 ◽  
Vol 76 (2special) ◽  
pp. 658-666
Author(s):  
Juichi Ito ◽  
Izuru Matsuoka ◽  
Tokuya Takatani ◽  
Masashi Sasa ◽  
Shuji Takakori

2002 ◽  
Vol 11 (6) ◽  
pp. 357-363 ◽  
Author(s):  
Yong Tang ◽  
Ivan Lopez ◽  
Robert W. Baloh

An unbiased stereological method was used to assess the effect of aging on the number of neurons in the human medial vestibular nucleus. We studied 13 normal brainstem specimens (age at death from 40 to 93 years) that were part of a prior study that counted neuronal profiles and used a correction factor to estimate the number of neurons in the human vestibular nucleus. On average, we found 151 · 10 3 ( CV = 0.15) neurons in the medial vestibular nucleus, which is 18% significant decrease in the number of neurons with aging. This age-related neuronal loss in the vestibular nucleus could have important functional implications regarding the well-known deterioration in balance that occurs with aging.


Sign in / Sign up

Export Citation Format

Share Document