scholarly journals Citrate Blood Cell Fraction

2020 ◽  
Author(s):  
2019 ◽  
Vol 39 (3) ◽  
pp. 271
Author(s):  
Hyunjung Kim ◽  
Young Ok Kim ◽  
Yonggoo Kim ◽  
Jin-Soon Suh ◽  
Eun-Jung Cho ◽  
...  

Author(s):  
Takehito Sugasawa ◽  
Kai Aoki ◽  
Koichi Watanabe ◽  
Koki Yanazawa ◽  
Tohru Natsume ◽  
...  

With the rapid progress of genetic engineering and gene therapy, World Anti-Doping Agency has alerted to gene doping and prohibited its use in sports. However, there is no standard method available yet for detection of transgenes delivered by recombinant adenoviral (rAdV) vectors. Here we aimed to develop a detection method for transgenes delivered by rAdV vectors in a mouse model that mimics gene doping. rAdV vectors containing mCherry gene was delivered in mice through intravenous injection or local muscular injection. After five days, stool and whole blood samples were collected, and total DNA was extracted. As additional experiments, whole blood was also collected from mouse tail tip until 15 days from injection of the rAdv vector. Transgene fragments from different DNA samples were analyzed using semi-quantitative PCR (sqPCR), quantitative PCR (qPCR), and droplet digital PCR (ddPCR). In the results, transgene fragments could directly be detected from blood cell fraction-DNA, plasma-cell free DNA and stool-DNA by qPCR and ddPCR, depending on specimen type and injection methods. We observed that a combination of blood cell fraction-DNA and ddPCR was more sensitive than other combinations used in this model. These results could accelerate the development of detection methods for gene doping.


2019 ◽  
Vol 39 (3) ◽  
pp. 271-277 ◽  
Author(s):  
Hyunjung Kim ◽  
Young Ok Kim ◽  
Yonggoo Kim ◽  
Jin-Soon Suh ◽  
Eun-Jung Cho ◽  
...  

Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 436 ◽  
Author(s):  
Takehito Sugasawa ◽  
Kai Aoki ◽  
Koichi Watanabe ◽  
Koki Yanazawa ◽  
Tohru Natsume ◽  
...  

With the rapid progress of genetic engineering and gene therapy, the World Anti-Doping Agency has been alerted to gene doping and prohibited its use in sports. However, there is no standard method available yet for the detection of transgenes delivered by recombinant adenoviral (rAdV) vectors. Here, we aim to develop a detection method for transgenes delivered by rAdV vectors in a mouse model that mimics gene doping. These rAdV vectors containing the mCherry gene was delivered in mice through intravenous injection or local muscular injection. After five days, stool and whole blood samples were collected, and total DNA was extracted. As additional experiments, whole blood was also collected from the mouse tail tip until 15 days from injection of the rAdv vector. Transgene fragments from different DNA samples were analyzed using semi-quantitative PCR (sqPCR), quantitative PCR (qPCR), and droplet digital PCR (ddPCR). In the results, transgene fragments could be directly detected from blood cell fraction DNA, plasma cell-free DNA, and stool DNA by qPCR and ddPCR, depending on specimen type and injection methods. We observed that a combination of blood cell fraction DNA and ddPCR was more sensitive than other combinations used in this model. These results could accelerate the development of detection methods for gene doping.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2890-2890
Author(s):  
Rodrigo Morales ◽  
Kimberley A. Buytaert-Hoefen ◽  
Eric T. Hansen ◽  
Dennis Hlavinka ◽  
Raymond Goodrich ◽  
...  

Abstract Although prion diseases are rare in humans, the established link between a new variant form of CJD (vCJD) and the consumption of cattle meat contaminated by BSE have raised concerns about a possible outbreak of a large epidemic in the human population. Over the past few years, BSE has become a significant health concern in several countries, and it now seems apparent that vCJD can also be iatrogenically transmitted from human to human by blood transfusion. Exacerbating this state of affairs is the lack of a reliable test to identify individuals incubating the disease during the long and silent period from the onset of infection to the appearance of clinical symptoms. The purpose of this research study was to evaluate the effectiveness of separation of whole blood and washing of the red cell fraction for the removal of infectious scrapie prion protein (PrPSc) from red blood cell (RBC) suspensions. Samples of human, whole blood were spiked with 5 × 106 LD50 263K PrPSc. Analysis of the treated sample supernatants by Western blot revealed that approximately >88% of the PrPSc was removed with the initial plasma expression and the equivalent of 6% was detected in a saline wash (300 mL; 0.9% saline). The final sample of RBCs revealed no detectable levels of PrPSc by Western blots. Further analysis of the treated RBCs using the PMCA assay indicated detectable amounts of PrPSc only after 2 consecutive amplification rounds. Semi-quantitative analysis of PMCA amplification enabled us to estimate that the treated RBCs contained less than 1 × 104 LD50 PrPSc. This corresponded to removal levels exceeding ≥99% of spiked material in whole blood. These in vitro estimations were confirmed by in vivo infectivity studies in a hamster model of disease transmission. Results from in vivo studies displayed significant differences in the incubation periods of the spiked blood inoculated hamsters (100.1 ± 1.7) versus washed RBCs (135.8 ± 6.7). Moreover, a substantial difference in the attack rate (6/15: 40% in washed RBC, versus 13/13: 100% in spiked blood) further indicated a substantial removal of infectious prions. Comparison of this data with results of animals inoculated with different dilutions of infectious material, indicated a >99.94% reduction of infectivity. Washed, packed human red cells produced by this procedure were able to be stored in standard additive solutions (AS-3) for 42 days while still meeting all in vitro blood bank standards for acceptable red cell quality. Conclusion This data suggests that separation of plasma coupled with a simple, low volume wash of red cells may represent an efficient method to remove prions from red blood cell fractions, thus reducing possible infectivity of these products.


Biorheology ◽  
2021 ◽  
pp. 1-10
Author(s):  
Alper Turgut ◽  
Özlem Yalçin

BACKGROUND: Measurement of abnormal Red Blood Cell (RBC) deformability is a main indicator of Sickle Cell Anemia (SCA) and requires standardized quantification methods. Ektacytometry is commonly used to estimate the fraction of Sickled Cells (SCs) by measuring the deformability of RBCs from laser diffraction patterns under varying shear stress. In addition to estimations from model comparisons, use of maximum Elongation Index differences (ΔEImax) at different laser intensity levels was recently proposed for the estimation of SC fractions. OBJECTIVE: Implement a convolutional neural network to accurately estimate rigid-cell fraction and RBC concentration from laser diffraction patterns without using a theoretical model and eliminating the ektacytometer dependency for deformability measurements. METHODS: RBCs were collected from control patients. Rigid-cell fraction experiments were performed using varying concentrations of glutaraldehyde. Serial dilutions were used for varying the concentration of RBC. A convolutional neural network was constructed using Python and TensorFlow. RESULTS: Our measurements and model predictions show that a linear relationship between ΔEImax and rigid-cell fraction exists only for rigid-cell fractions less than 0.2. Our proposed neural network architecture can be used successfully for both RBC concentration and rigid-cell fraction estimations without a need for a theoretical model.


1999 ◽  
Vol 31 (1-2) ◽  
pp. 1115-1116 ◽  
Author(s):  
M Storck ◽  
D Abendroth ◽  
W Albrecht ◽  
H.W Sollinger

Sign in / Sign up

Export Citation Format

Share Document