Effect Of Printing Parameters On The High Strain Rate Compressive Behaviour Of Additively Manufactured 316L Stainless Steel Alloy

2021 ◽  
Author(s):  
Kenneth Hukpati ◽  
Ali Eliasu ◽  
Solomon Boakye-Yiadom ◽  
Aleksander Czekanski
1996 ◽  
Vol 67 (10) ◽  
pp. 444-449 ◽  
Author(s):  
David Hernandez ◽  
Georg Frommeyer ◽  
Harald Hofmann

Author(s):  
S. Chaudhry ◽  
M. Al-Dojayli ◽  
A. Czekanski

As 3-D printed materials are being embraced by the manufacturing industries, understanding the response mechanism to high strain rate events becomes a concern to meet requirements for a specific application. In order to improve the mechanical performance of a 3-D printed part, it is necessary to quantify the impact of various printing parameters on the mechanical properties. Initial studies have shown that a difference in 3-D printed material is expected due to the effect of manufacturing parameters such as anisotropy relating to printing direction, infill pattern, infill percentage, layer height and orientation of the part being printed. The main focus of the study is to characterize the effect of the previously mentioned printing parameters under quasi-static and high strain rate (100–1000 /s). In this strain rate regime, the most common apparatus used is the Split Hopkinson pressure bar (also known as Kolsky bar). It consists of a cylindrical metallic bar that has a striker, input and output bar. While the specimen is fixated between the input and output bar, the striker bar is accelerated and triggers the incident bar. As a result, an elastic wave is generated which travels towards the specimen/input bar interface, where some part of it is reflected and the rest is transmitted. The Kolsky bar is adjusted by using a hollow transmitter tube and pulse shaper. Due to an impedance mismatch between the samples and bar material, the amplitude of the transmitted pulse is low. Using a hollow transmitter bar increases this amplitude due to area mismatch between the specimen and tube. Using a pulse shaper between the striker and input bar, the rise time of the elastic compressive wave increases and assists in achieving a constant rate of loading. The compressive stress strain curves were obtained under high strain rates to determine the strain rate effect. To measure the response under static testing conditions, a commercial load frame was used. A comprehensive comparison of dynamic compressive response of samples was performed to characterize the effect of printing parameters.


Sign in / Sign up

Export Citation Format

Share Document