steel alloy
Recently Published Documents


TOTAL DOCUMENTS

471
(FIVE YEARS 117)

H-INDEX

25
(FIVE YEARS 4)

Author(s):  
Valentin Mereuta

Abstract: In this work the 3D model of the camshaft was done using Autodesk Inventor version 2021 with the literature data and finite element analysis is performed by applying restrictions and loads conditions, first by the absence of the torque and then by applying the torque. Three materials were analyzed in both situations: Cast Iron, Stainless Steel AISI 202 and Steel Alloy. Following the comparative study for the three materials, it can be specified the importance of the material for the construction of the camshaft. Keywords: Camshaft, Static analysis, Autodesk Inventor


2021 ◽  
Vol 61 (6) ◽  
pp. 762-767
Author(s):  
Hanna Rostova ◽  
Victor Voyevodin ◽  
Ruslan Vasilenko ◽  
Igor Kolodiy ◽  
Vladimir Kovalenko ◽  
...  

The microstructure, hardness and cavitation wear of Eurofer 97, Cr18Ni10Ti and 42HNM have been investigated. It was revealed that the cavitation resistance of the 42HNM alloy is by an order of magnitude higher than that of the Cr18Ni10Ti steel and 16 times higher than that of the Eurofer 97 steel. Alloy 42HNM has the highest microhardness (249 kg/mm2) of all the investigated materials, which explains its high cavitation resistance. The microhardness values of the Cr18Ni10Ti steel and the Eurofer 97 were 196.2 kg/mm2 and 207.2 kg/mm2, respectively. The rate of cavitation wear of the austenitic steel Cr18Ni10Ti is 2.6 times lower than that of the martensitic Eurofer 97.


2021 ◽  
pp. 110013
Author(s):  
Iman Abdallah ◽  
Taeho Kim ◽  
Xueyang Wu ◽  
Louis Bailly-Salins ◽  
Mohamed Elbakhshwan ◽  
...  

Author(s):  
Muralimohan Gurusamy ◽  
Balkrishna C Rao

A modified Zerilli–Armstrong model has been proposed and validated in previous works for simulating distinct deformation mechanisms of continuous-shear and shear-localization during severe plastic deformation of a face centered cubic alloy. In this paper, the validity of the modified Zerilli–Armstrong model has been further tested by using it for modeling the severe plastic deformation of another face centered cubic material, a steel alloy. In particular, the modified Zerilli–Armstrong model is used as a constitutive relation for simulating behavior of AISI 1045 steel alloy while undergoing severe plastic deformation through orthogonal and plane-strain machining. Accordingly, the performance of the constitutive relation in predicting flow stress distribution along the primary shear zone is validated by comparing with forecasts made using the distributed primary zone deformation, the original Zerilli-Armstrong and Johnson-Cook models. Furthermore, finite element simulations of orthogonal cutting of this steel alloy were carried out, and good agreement was observed between the predicted chip morphology and attendant cutting forces with experimental values reported in literature for a range of cutting conditions. The force predictions also fared better compared to those predicted by using the Zerilli-Armstrong and Johnson-Cook models. These validations provide further corroboration of using the modified Zerilli–Armstrong model as a constitutive relation for simulating the behavior of face-centered cubic materials under conditions of high plastic strains and also high strain-rates.


Sign in / Sign up

Export Citation Format

Share Document