Performance of 3-D Printed Thermoplastic Polyurethane Under Quasi-Static and High-Strain Rate Loading

Author(s):  
S. Chaudhry ◽  
M. Al-Dojayli ◽  
A. Czekanski

As 3-D printed materials are being embraced by the manufacturing industries, understanding the response mechanism to high strain rate events becomes a concern to meet requirements for a specific application. In order to improve the mechanical performance of a 3-D printed part, it is necessary to quantify the impact of various printing parameters on the mechanical properties. Initial studies have shown that a difference in 3-D printed material is expected due to the effect of manufacturing parameters such as anisotropy relating to printing direction, infill pattern, infill percentage, layer height and orientation of the part being printed. The main focus of the study is to characterize the effect of the previously mentioned printing parameters under quasi-static and high strain rate (100–1000 /s). In this strain rate regime, the most common apparatus used is the Split Hopkinson pressure bar (also known as Kolsky bar). It consists of a cylindrical metallic bar that has a striker, input and output bar. While the specimen is fixated between the input and output bar, the striker bar is accelerated and triggers the incident bar. As a result, an elastic wave is generated which travels towards the specimen/input bar interface, where some part of it is reflected and the rest is transmitted. The Kolsky bar is adjusted by using a hollow transmitter tube and pulse shaper. Due to an impedance mismatch between the samples and bar material, the amplitude of the transmitted pulse is low. Using a hollow transmitter bar increases this amplitude due to area mismatch between the specimen and tube. Using a pulse shaper between the striker and input bar, the rise time of the elastic compressive wave increases and assists in achieving a constant rate of loading. The compressive stress strain curves were obtained under high strain rates to determine the strain rate effect. To measure the response under static testing conditions, a commercial load frame was used. A comprehensive comparison of dynamic compressive response of samples was performed to characterize the effect of printing parameters.

2000 ◽  
Author(s):  
Uday K. Vaidya ◽  
Scott P. Nelson ◽  
Biju Mathew ◽  
Renee M. Rodgers ◽  
Mahesh V. Hosur

Abstract This paper deals with an innovative integrated hollow (space) E-glass/epoxy core sandwich composite construction that possesses several multi-functional benefits in addition to the providing light-weight and bending stiffness advantages. In comparison to traditional foam and honeycomb cores, the integrated space core provides a means to route wires/rods, embed electronic assemblies, and store fuel and fire-retardant foam, among other conceivable benefits. In the current work the low velocity impact (LVI) response of innovative integrated sandwich core composites was investigated. Three thickness of integrated and functionality-embedded E-glass/epoxy sandwich cores were considered in this study — including 6mm, 9mm and 17 mm. The low-velocity impact results indicated that the hollow and functionality embedded integrated core suffered a localized damage state limited to a system of core members in the vicinity of the impact. Stacking of the core was an effective way of improving functionality and limiting the LVI damage in the sandwich plate. The functionality-embedded cores provided enhanced LVI resistance due to energy additional energy absorption mechanisms. The high strain rate (HSR) impact behavior of these sandwich constructions is also studied using a Split Hopkinson Pressure Bar (SHPB) at strain rates ranging from 163 to 653 per second. The damage initiation, progression and failure mechanisms under low velocity and high strain rate impact are investigated through optical and scanning electron microscopy.


2007 ◽  
Vol 340-341 ◽  
pp. 283-288 ◽  
Author(s):  
Jung Han Song ◽  
Hoon Huh

The dynamic response of the turbine blade materials is indispensable for analysis of erosions of turbine blades as a result of impulsive loading associated with gas flow. This paper is concerned with the dynamic material properties of the Inconel 718 alloy which is widely used in the high speed turbine blade. The dynamic response at the corresponding level of the strain rate should be acquired with an adequate experimental technique and apparatus due to the inertia effect and the stress wave propagation. In this paper, the dynamic response of the Inconel 718 at the intermediate strain rate ranged from 1/s to 400/s is obtained from the high speed tensile test and that at the high strain rate above 1000/s is obtained from the split Hopkinson pressure bar test. The effects of the strain rate on the dynamic flow stress, the strain rate sensitivity and the failure elongation are evaluated with the experimental results. Experimental results from both the quasi-static and the high strain rate up to 3000/s are interpolated in order to construct the constitutive relation that should be applied to simulate the dynamic behavior of the turbine blade made of the Inconel 718.


2011 ◽  
Vol 82 ◽  
pp. 154-159 ◽  
Author(s):  
Anatoly M. Bragov ◽  
Ezio Cadoni ◽  
Alexandr Yu. Konstantinov ◽  
Andrey K. Lomunov

In this paper is described the mechanical characterization at high strain rate of the high strength steel usually adopted for strands. The experimental set-up used for high strain rates testing: in tension and compression was the Split Hopkinson Pressure Bar installed in the Laboratory of Dynamic Investigation of Materials in Nizhny Novgorod. The high strain rate data in tension was obtained with dog-bone shaped specimens of 3mm in diameter and 5mm of gauge length. The specimens were screwed between incident and transmitter bars. The specimens used in compression was a cylinder of 3mm in diameter and 5mm in length. The enhancement of the mechanical properties is quite limited compared the usual reinforcing steels.


Author(s):  
Ericka K. Amborn ◽  
Karim H. Muci-Küchler ◽  
Brandon J. Hinz

Studying the high strain rate behavior of soft tissues and soft tissue surrogates is of interest to improve the understanding of injury mechanisms during blast and impact events. Tests such as the split Hopkinson pressure bar have been successfully used to characterize material behavior at high strain rates under simple loading conditions. However, experiments involving more complex stress states are needed for the validation of constitutive models and numerical simulation techniques for fast transient events. In particular, for the case of ballistic injuries, controlled tests that can better reflect the effects induced by a penetrating projectile are of interest. This paper presents an experiment that tries to achieve that goal. The experimental setup involves a cylindrical test sample made of a translucent soft tissue surrogate that has a small pre-made cylindrical channel along its axis. A small caliber projectile is fired through the pre-made channel at representative speeds using an air rifle. High speed video is used in conjunction with specialized software to generate data for model validation. A Lagrangian Finite Element Method (FEM) model was prepared in ABAQUS/Explicit to simulate the experiments. Different hyperelastic constitutive models were explored to represent the behavior of the soft tissue surrogate and the required material properties were obtained from high strain rate test data reported in the open literature. The simulation results corresponding to each constitutive model considered were qualitatively compared against the experimental data for a single projectile speed. The constitutive model that provided the closest match was then used to perform an additional simulation at a different projectile velocity and quantitative comparisons between numerical and experimental results were made. The comparisons showed that the Marlow hyperelastic model available in ABAQUS/Explicit was able to produce a good representation of the soft tissue surrogate behavior observed experimentally at the two projectile speeds considered.


Sign in / Sign up

Export Citation Format

Share Document