scholarly journals APPLICABILITY OF ARTIFICIAL NEURAL NETWORK MODEL FOR SIMULATION OF MONTHLY RUNOFF IN COMPARISON WITH SOM OTHER TRADITIONAL MODELS

2009 ◽  
Vol 12 (4) ◽  
pp. 94-106 ◽  
Author(s):  
Duc Van Le

Artificial Neural Network (ANN) model along with Back Propagation Algorithm (BPA) has been applied in many fields, especially in hydrology and water resources management to simulate or forecast rainfall runoff process, discharge and water level - time series, and other hydrological variables. Several researches have recently been focusing to compare the applicability of ANN model with other theory-driven and data-driven approaches. The comparison of ANN with M5 model trees for rainfall-runoff forecasting, with ARMAX models for deriving flow series, with AR models and regression models for forecasting and estimating daily river flows have been carried out. The better results that were implemented by ANN model have been concluded. So, this research trend is continued for the comparison of ANN model with Tank, Harmonic, Thomas and Fiering models in simulation of the monthly runoffs at Dong Nai river basin, Viet Nam. The results proved ANN being the best choice among these models, if suitable and enough data sources were available.

2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Gozde Pektas ◽  
Erdal Dinc ◽  
Dumitru Baleanu

Simultaneaous spectrophotometric determination of clorsulon (CLO) and invermectin (IVE) in commercial veterinary formulation was performed by using the artificial neural network (ANN) based on the back propagation algorithm. In order to find the optimal ANN model various topogical networks were tested by using different hidden layers. A logsig input layer, a hidden layer of neurons using the logsig transfer function and an output layer of two neurons with purelin transfer function was found suitable for basic configuration for ANN model. A calibration set consisting of CLO and IVE in calibration set was prepared in the concentration range of 1-23 �g/mL and 1-14 �g/mL, repectively. This calibration set contains 36 different synthetic mixtures. A prediction set was prepared in order to evaluate the recovery of the investigated approach ANN chemometric calibration was applied to the simultaneous analysis of CLO and IVE in compounds in a commercial veterinary formulation. The experimental results indicate that the proposed method is appropriate for the routine quality control of the above mentioned active compounds.


2015 ◽  
Vol 15 (4) ◽  
pp. 266-274 ◽  
Author(s):  
Adel Ghith ◽  
Thouraya Hamdi ◽  
Faten Fayala

Abstract An artificial neural network (ANN) model was developed to predict the drape coefficient (DC). Hanging weight, Sample diameter and the bending rigidities in warp, weft and skew directions are selected as inputs of the ANN model. The ANN developed is a multilayer perceptron using a back-propagation algorithm with one hidden layer. The drape coefficient is measured by a Cusick drape meter. Bending rigidities in different directions were calculated according to the Cantilever method. The DC obtained results show a good correlation between the experimental and the estimated ANN values. The results prove a significant relationship between the ANN inputs and the drape coefficient. The algorithm developed can easily predict the drape coefficient of fabrics at different diameters.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
A. Sadighzadeh ◽  
A. Salehizadeh ◽  
M. Mohammadzadeh ◽  
F. Shama ◽  
S. Setayeshi ◽  
...  

Artificial neural network (ANN) is applied to predict the number of produced neutrons from IR-IECF device in wide discharge current and voltage ranges. Experimentally, discharge current from 20 to 100 mA had been tuned by deuterium gas pressure and cathode voltage had been changed from −20 to −82 kV (maximum voltage of the used supply). The maximum neutron production rate (NPR) of 1.46 × 107 n/s had occurred when the voltage was −82 kV and the discharge current was 48 mA. The back-propagation algorithm is used for training of the proposed multilayer perceptron (MLP) neural network structure. The obtained results show that the proposed ANN model has achieved good agreement with the experimental data. Results show that NPR of 1.855 × 108 n/s can be achieved in voltage and current of 125 kV and 45 mA, respectively. This prediction shows 52% increment in maximum voltage of power supply. Also, the optimum discharge current can increase 1270% NPR.


SINERGI ◽  
2018 ◽  
Vol 22 (3) ◽  
pp. 193
Author(s):  
Ika Sari Damayanthi Sebayang ◽  
Agus Suroso ◽  
Alnis Gustin Laoli

The rainfall-runoff model is required to ascertain the relationship between rainfall and runoff. Hydrologists are often confronted with problems of prediction and estimation of runoff using the rainfall date. In actual fact the relationship of rainfall-runoff is known to be highly non-linear and complex. The spatial and temporal precipitation patterns and the variability of watershed characteristics create a more complex hydrologic phenomenon. Runoff is part of the rain water that enters and flows and enters the river body. Rainfall-runoff modeling in this study using Artificial Neural Network, back propagation method and sigmoid binary activation function. This model is used to simulate single or long-term continuous events, water volume, making it very appropriate for urban areas. Back propagation is an inherited learning algorithm and is commonly used by perceptron with multiple layers to change the weights associated with neurons in the hidden layer. Back propagation algorithm uses output error to change the values of its weight in the backward direction. The location of the review is the Ciujung River Basin (DAS), the data used are rainfall and debit data of Ciujung River from 2011-2017. Based on training and simulation results, obtained R2 value: 2012 = 0,85102; 2013 = 0,78661; 2014 = 0,81188; 2015 = 0,77902; 2016 = 0,7279. on model 2 = 0,8724. On model 3 R2:  January = 0,96937; February = 0,92984; March = 0,90666; April = 0,92566; May = 0,9128; June = 0,87975; July= 0,85292; August = 0,95943; September = 0,88229; October = 0,90537; November = 0,93522; December = 0,9111. with MSE (Mean Squared Error) of 0,0018479. The closer value of MSE to 0 and the value of R2 close to 1 then the better designed artificial neural network. If the data used for training more, the artificial neural network will produce a larger R2 value.


2020 ◽  
Vol 26 (3) ◽  
pp. 209-223
Author(s):  
M. Madhiarasan ◽  
M. Tipaldi ◽  
P. Siano

Artificial neural network (ANN)-based methods belong to one of the most growing research fields within the artificial intelligence ecosystem, and many novel contributions have been developed over the last years. They are applied in many contexts, although some “influencing factors” such as the number of neurons, the number of hidden layers, and the learning rate can impact the performance of the resulting artificial neural network-based applications. This paper provides a deep analysis about artificial neural network performance based on such factors for real-world temperature forecasting applications. An improved back propagation algorithm for such applications is also presented. By using the results of this paper, researchers and practitioners can analyse the encountered issues when applying ANN-based models for their own specific applications with the aim of achieving better performance indexes.


2012 ◽  
Vol 524-527 ◽  
pp. 1331-1334
Author(s):  
Jun Ni ◽  
Zhan Li Ren ◽  
Guo Qing Han

Beam pump dynamometer card plays an important role in identifying the production state of oil wells. With an ability to reflect any non-linear mapping relationship, the artificial neural network (ANN) can be used in pattern recognition. This paper illuminates ANN realization in identifying fault kinds of dynamometer cards, including a back-propagation algorithm, characteristics of the Dynamometer card and some examples. It is concluded that the buildup of a neural network and the abstract of dynamometer cards are important to successful application.


2021 ◽  
Vol 25 (2) ◽  
pp. 253-260
Author(s):  
James Abiodun Adeyanju ◽  
John Oluranti Olajide ◽  
Emmanuel Olusola Oke ◽  
Jelili Babatunde Hussein ◽  
Chiamaka Jane Ude

Abstract This study uses artificial neural network (ANN) to predict the thermo-physical properties of deep-fat frying plantain chips (ipekere). The frying was conducted with temperature and time ranged of 150 to 190 °C and 2 to 4 minutes using factorial design. The result revealed that specific heat was most influenced by temperature and time with the value 2.002 kJ/kg°C at 150 °C and 2.5 minutes. The density ranged from 0.997 – 1.005 kg/m3 while thermal diffusivity and conductivity were least affected with 0.192 x 10−6 m2/s and 0.332 W/m°C respectively at 190 °C and 4 minutes. The ANN architecture was developed using Levenberg–Marquardt (TRAINLM) and Feed-forward back propagation algorithm. The experimentation based on the ANN model produced a desirable prediction of the thermo-physical properties through the application of diverse amount of neutrons in the hidden layer. The predictive experimentation of the computational model with R2 ≥ 0.7901 and MSE ≤ 0.1125 does not only show the validity in anticipating the thermo-physical properties, it also indicates the capability of the model to identify a relevant association between frying time, frying temperatures and thermo-physical properties. Hence, to avoid a time consuming and expensive experimental tests, the developed model in this study is efficient in prediction of the thermo-physical properties of deep-fat frying plantain chips.


Author(s):  
Somayeh Ezadi ◽  
Tofigh Allahviranloo

This paper aims to solve the celebrated Fuzzy Fractional Differential Equations (FFDE) using an Artificial Neural Network (ANN) technique. Compared to the integer order differential equation, the proposed FFDE can better describe several real application problems of various physical systems. To accomplish the aforementioned aim, the error back propagation algorithm and a multi-layer feed forward neural architecture are utilized using the unsupervised learning in order to minimize the error function as well as the modification of the parameters such as weights and biases. By combining the initial conditions with the ANN, output provides an appropriate approximate solution of the proposed FFDE. Then, two illustrative examples are solved to confirm the applicability of the concept as well as to demonstrate both the precision and effectiveness of the developed method. By comparing with some traditional methods, the obtained results reveals a close match that confirms both accuracy and correctness of the proposed method.


2017 ◽  
Vol 3 (2) ◽  
pp. 78-87 ◽  
Author(s):  
Ajaykumar Bhagubhai Patel ◽  
Geeta S. Joshi

The use of an Artificial Neural Network (ANN) is becoming common due to its ability to analyse complex nonlinear events. An ANN has a flexible, convenient and easy mathematical structure to identify the nonlinear relationships between input and output data sets. This capability could efficiently be employed for the different hydrological models such as rainfall-runoff models, which are inherently nonlinear in nature. Artificial Neural Networks (ANN) can be used in cases where the available data is limited. The present work involves the development of an ANN model using Feed-Forward Back Propagation algorithm for establishing monthly and annual rainfall runoff correlations. The hydrologic variables used were monthly and annual rainfall and runoff for monthly and annual time period of monsoon season. The ANN model developed in this study is applied to Dharoi reservoir watersheds of Sabarmati river basin of India. The hydrologic data were available for twenty-nine years at Dharoi station at Dharoi dam project. The model results yielding into the least error is recommended for simulating the rainfall-runoff characteristics of the watersheds. The obtained results can help the water resource managers to operate the reservoir properly in the case of extreme events such as flooding and drought.


10.17158/320 ◽  
2014 ◽  
Vol 18 (2) ◽  
Author(s):  
Eric John G. Emberda ◽  
Den Ryan L. Dumas ◽  
Timothy Pierce M. Rentillo

<p>This study compared the use of Linear Regression and Feed Forward Backpropagation Artificial Neural Network (ANN) in forecasting the coconut yield and copra yield of a selected area in Davao region. Raw data were gathered from the Philippine Coconut Authority, Davao Research Center. An ANN model was created and tested repeatedly to the best combination of nodes. Accuracy of the forecast between the two methods was compared by looking at the mean square error and the standard error for variable x and y. Results showed that the use of Feed Forward Back Propagation Artificial Neural Network gives better accuracy of the forecast data.</p>


Sign in / Sign up

Export Citation Format

Share Document