scholarly journals Applications of Cyclodextrins Modified/Coated Metal–Organic Frameworks

Author(s):  
Huacheng Zhang

The introduction of cyclodextrins (CDs) via noncovalent bonds could improve various physiochemical properties of metal-organic frameworks (MOFs) and expand their practical applications in aqueous solutions, for example, biocompatible CDs could improve the solubility of CDs-coated MOFs as a hybrid delivery system. And external-stimuli responsiveness of CDs-coated MOFs is key for widening applications in controlled drug releasing system, catalysis, detection, extraction and separation.

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1273 ◽  
Author(s):  
Huacheng Zhang ◽  
Zhaona Liu ◽  
Jian Shen

Recent progress about a novel organic–inorganic hybrid materials, namely cyclodextrins (CDs) modified/coated metal–organic frameworks (MOFs) is summarized by using a special categorization method focusing on the interactions between CDs and MOFs moieties, such as ligand–metal cations interactions, supramolecular interactions including host–guest interactions and hydrogen bonding, as well as covalent bonds. This review mainly focuses on the interactions between CDs and MOFs and the strategy of combining them together, diverse external stimuli responsiveness of CDs-modified/coated MOFs, as well as applications of these hybrid materials to drug delivery and release system, catalysis and detection materials. Additionally, due to the importance of investigating advanced chemical architectures and physiochemical properties of CDs-modified/coated MOFs, a separate section is involved in diverse characterization methods and instruments. Furthermore, this minireview also foresees future research directions in this rapidly developing field.


Nanoscale ◽  
2022 ◽  
Author(s):  
Rijia Lin ◽  
Yuqi Yao ◽  
Muhammad Yazid Bin Zulkifli ◽  
Xuemei Li ◽  
Shuai Gao ◽  
...  

The practical applications of metal-organic frameworks (MOFs) usually require their assembly into mechanically robust structures, usually achieved via coating onto various types of substrates. This paper describes a simple, scalable,...


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Shamsur Rahman ◽  
Arash Arami-Niya ◽  
Xiaoxian Yang ◽  
Gongkui Xiao ◽  
Gang (Kevin) Li ◽  
...  

Abstract“Breathing” and “gating” are striking phenomena exhibited by flexible metal-organic frameworks (MOFs) in which their pore structures transform upon external stimuli. These effects are often associated with eminent steps and hysteresis in sorption isotherms. Despite significant mechanistic studies, the accurate description of stepped isotherms and hysteresis remains a barrier to the promised applications of flexible MOFs in molecular sieving, storage and sensing. Here, we investigate the temperature dependence of structural transformations in three flexible MOFs and present a new isotherm model to consistently analyse the transition pressures and step widths. The transition pressure reduces exponentially with decreasing temperature as does the degree of hysteresis (c.f. capillary condensation). The MOF structural transition enthalpies range from +6 to +31 kJ·mol−1 revealing that the adsorption-triggered transition is entropically driven. Pressure swing adsorption process simulations based on flexible MOFs that utilise the model reveal how isotherm hysteresis can affect separation performance.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 370 ◽  
Author(s):  
Guangyuan Yang ◽  
Jialin Yu ◽  
Sanwen Peng ◽  
Kuang Sheng ◽  
Haining Zhang

The design and synthesis of solid sorbents for effective carbon dioxide adsorption are essential for practical applications regarding carbon emissions. Herein, we report the synthesis of composite materials consisting of amine-functionalized imidazolium-type poly(ionic liquid) (PIL) and metal organic frameworks (MOFs) through complexation of amino groups and metal ions. The carbon dioxide adsorption behavior of the synthesized composite materials was evaluated using the temperature-programmed desorption (TPD) technique. Benefiting from the large surface area of metal organic frameworks and high carbon dioxide diffusivity in ionic liquid moieties, the carbon dioxide adsorption capacity of the synthesized composite material reached 19.5 cm3·g−1, which is much higher than that of pristine metal organic frameworks (3.1 cm3·g−1) under carbon dioxide partial pressure of 0.2 bar at 25 °C. The results demonstrate that the combination of functionalized poly(ionic liquid) with metal organic frameworks can be a promising solid sorbent for carbon dioxide adsorption.


Data in Brief ◽  
2018 ◽  
Vol 20 ◽  
pp. 799-804 ◽  
Author(s):  
Bahram Kamarehie ◽  
Zahra Noraee ◽  
Ali Jafari ◽  
Mansour Ghaderpoori ◽  
Mohammad Amin Karami ◽  
...  

2019 ◽  
Vol 58 (13) ◽  
pp. 8339-8346 ◽  
Author(s):  
Dushyant Barpaga ◽  
Jian Zheng ◽  
Kee Sung Han ◽  
Jennifer A. Soltis ◽  
Vaithiyalingam Shutthanandan ◽  
...  

2020 ◽  
Vol 56 (66) ◽  
pp. 9416-9432 ◽  
Author(s):  
Zhanning Liu ◽  
Lu Zhang ◽  
Daofeng Sun

This feature article mainly summarizes how the structure of MOFs changes under external stimuli.


Sign in / Sign up

Export Citation Format

Share Document