Stimuli-responsive structural changes in metal–organic frameworks

2020 ◽  
Vol 56 (66) ◽  
pp. 9416-9432 ◽  
Author(s):  
Zhanning Liu ◽  
Lu Zhang ◽  
Daofeng Sun

This feature article mainly summarizes how the structure of MOFs changes under external stimuli.

2021 ◽  
Author(s):  
jorge Albalad ◽  
Ricardo Peralta ◽  
Michael Huxley ◽  
Steven Tsoukatos ◽  
Zhaolin Shi ◽  
...  

Stimuli-responsive metal-organic frameworks (MOFs) exhibit dynamic, and typically reversible, structural changes upon exposure to external stimuli. This process often induces drastic changes in their adsorption properties. Herein, we present a...


2021 ◽  
Author(s):  
Francesco Walenszus ◽  
Jack D. Evans ◽  
Volodymyr Bon ◽  
Friedrich Schwotzer ◽  
Irena Senkovska ◽  
...  

The flexibility of soft porous crystals, i.e., their ability to respond to external stimuli with structural changes, is one of the most fascinating features of metal-organic frameworks. In addition to breathing and swelling phenomena of flexible MOFs, negative gas adsorption and pressure amplification is one of the more recent discoveries in this field, initially observed in the cubic DUT-49 framework. In recent years the structural contraction was monitored by physisorption, X‑ray diffraction, NMR and EPR techniques, providing only limited information about the electronic structure of the ligand. In this work we designed a new ligand with a fluorescent core in the linker backbone and synthesized three new MOFs, isoreticular to DUT-49, denoted as DUT‑140(M) (M - Cu, Co, Zn) crystalizing in space group. DUT‑140(Cu) can be desolvated and is highly porous with an accessible apparent surface area of 4870 m2g-1 and a pore volume of 2.59 cm3g-1. Furthermore, it shows flexibility and NGA upon adsorption of subcritical gases. DUT-140(Zn), synthesized using post-synthetic metal exchange, could only be studied with guests in the pores. In addition to the investigation of the adsorption behavior of DUT-140(Cu) spectroscopic and computational methods were used to study the light absorption properties.


CrystEngComm ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 1322-1345 ◽  
Author(s):  
Arijit Halder ◽  
Debajyoti Ghoshal

External stimuli-driven structural changes and the associated properties of dynamic MOFs are discussed with examples.


2021 ◽  
Author(s):  
Francesco Walenszus ◽  
Jack D. Evans ◽  
Volodymyr Bon ◽  
Friedrich Schwotzer ◽  
Irena Senkovska ◽  
...  

The flexibility of soft porous crystals, i.e., their ability to respond to external stimuli with structural changes, is one of the most fascinating features of metal-organic frameworks. In addition to breathing and swelling phenomena of flexible MOFs, negative gas adsorption and pressure amplification is one of the more recent discoveries in this field, initially observed in the cubic DUT-49 framework. In recent years the structural contraction was monitored by physisorption, X‑ray diffraction, NMR and EPR techniques, providing only limited information about the electronic structure of the ligand. In this work we designed a new ligand with a fluorescent core in the linker backbone and synthesized three new MOFs, isoreticular to DUT-49, denoted as DUT‑140(M) (M - Cu, Co, Zn) crystalizing in space group. DUT‑140(Cu) can be desolvated and is highly porous with an accessible apparent surface area of 4870 m2g-1 and a pore volume of 2.59 cm3g-1. Furthermore, it shows flexibility and NGA upon adsorption of subcritical gases. DUT-140(Zn), synthesized using post-synthetic metal exchange, could only be studied with guests in the pores. In addition to the investigation of the adsorption behavior of DUT-140(Cu) spectroscopic and computational methods were used to study the light absorption properties.


2021 ◽  
Vol 5 (4) ◽  
pp. 101
Author(s):  
Menglian Wei ◽  
Yu Wan ◽  
Xueji Zhang

Metal-organic framework (MOF) based stimuli-responsive polymers (coordination polymers) exhibit reversible phase-transition behavior and demonstrate attractive properties that are capable of altering physical and/or chemical properties upon exposure to external stimuli, including pH, temperature, ions, etc., in a dynamic fashion. Thus, their conformational change can be imitated by the adsorption/desorption of target analytes (guest molecules), temperature or pressure changes, and electromagnetic field manipulation. MOF-based stimuli responsive polymers have received great attention due to their advanced optical properties and variety of applications. Herein, we summarized some recent progress on MOF-based stimuli-responsive polymers (SRPs) classified by physical and chemical responsiveness, including temperature, pressure, electricity, pH, metal ions, gases, alcohol and multi-targets.


2020 ◽  
pp. 127233
Author(s):  
Shahla Karimzadeh ◽  
Siamak Javanbakht ◽  
Behzad Baradaran ◽  
Mohammad-Ali Shahbazi ◽  
Mahmoud Hashemzaei ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Shamsur Rahman ◽  
Arash Arami-Niya ◽  
Xiaoxian Yang ◽  
Gongkui Xiao ◽  
Gang (Kevin) Li ◽  
...  

Abstract“Breathing” and “gating” are striking phenomena exhibited by flexible metal-organic frameworks (MOFs) in which their pore structures transform upon external stimuli. These effects are often associated with eminent steps and hysteresis in sorption isotherms. Despite significant mechanistic studies, the accurate description of stepped isotherms and hysteresis remains a barrier to the promised applications of flexible MOFs in molecular sieving, storage and sensing. Here, we investigate the temperature dependence of structural transformations in three flexible MOFs and present a new isotherm model to consistently analyse the transition pressures and step widths. The transition pressure reduces exponentially with decreasing temperature as does the degree of hysteresis (c.f. capillary condensation). The MOF structural transition enthalpies range from +6 to +31 kJ·mol−1 revealing that the adsorption-triggered transition is entropically driven. Pressure swing adsorption process simulations based on flexible MOFs that utilise the model reveal how isotherm hysteresis can affect separation performance.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1273 ◽  
Author(s):  
Huacheng Zhang ◽  
Zhaona Liu ◽  
Jian Shen

Recent progress about a novel organic–inorganic hybrid materials, namely cyclodextrins (CDs) modified/coated metal–organic frameworks (MOFs) is summarized by using a special categorization method focusing on the interactions between CDs and MOFs moieties, such as ligand–metal cations interactions, supramolecular interactions including host–guest interactions and hydrogen bonding, as well as covalent bonds. This review mainly focuses on the interactions between CDs and MOFs and the strategy of combining them together, diverse external stimuli responsiveness of CDs-modified/coated MOFs, as well as applications of these hybrid materials to drug delivery and release system, catalysis and detection materials. Additionally, due to the importance of investigating advanced chemical architectures and physiochemical properties of CDs-modified/coated MOFs, a separate section is involved in diverse characterization methods and instruments. Furthermore, this minireview also foresees future research directions in this rapidly developing field.


2015 ◽  
Vol 6 (3) ◽  
pp. 1640-1644 ◽  
Author(s):  
Li-Li Tan ◽  
Haiwei Li ◽  
Yu-Chen Qiu ◽  
Dai-Xiong Chen ◽  
Xin Wang ◽  
...  

Mechanized monodisperse nano metal–organic frameworks (NMOFs) gated by carboxylatopillar[5]arene (CP5) switches with bio-friendly pH-triggered release capabilities were constructed for the first time as a new stimuli-responsive theranostic hybrid platform.


2015 ◽  
Vol 212 ◽  
pp. 8-17 ◽  
Author(s):  
Jennifer Guerrero-Medina ◽  
Génesis Mass-González ◽  
Leonardo Pacheco-Londoño ◽  
Samuel P. Hernández-Rivera ◽  
Riqiang Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document