scholarly journals A Pressure-Drop Model for Oil-Gas Two-Phase Flow in Horizontal Pipes

2021 ◽  
Vol 17 (2) ◽  
pp. 371-383
Author(s):  
Xinke Yang ◽  
Shanzhi Shi ◽  
Hui Zhang ◽  
Yuzhe Yang ◽  
Zilong Liu ◽  
...  
2007 ◽  
Author(s):  
Wenhong Liu ◽  
Liejin Guo ◽  
Ximin Zhang ◽  
Kai Lin ◽  
Long Yang ◽  
...  

Author(s):  
L. Wenhong ◽  
G. Liejin ◽  
Z. Ximin ◽  
L. Kai ◽  
Y. Long ◽  
...  

2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Manmatha K. Roul ◽  
Sukanta K. Dash

Two-phase flow pressure drops through thin and thick orifices have been numerically investigated with air–water flows in horizontal pipes. Two-phase computational fluid dynamics (CFD) calculations, using the Eulerian–Eulerian model have been employed to calculate the pressure drop through orifices. The operating conditions cover the gas and liquid superficial velocity ranges Vsg = 0.3–4 m/s and Vsl = 0.6–2 m/s, respectively. The local pressure drops have been obtained by means of extrapolation from the computed upstream and downstream linearized pressure profiles to the orifice section. Simulations for the single-phase flow of water have been carried out for local liquid Reynolds number (Re based on orifice diameter) ranging from 3 × 104 to 2 × 105 to obtain the discharge coefficient and the two-phase local multiplier, which when multiplied with the pressure drop of water (for same mass flow of water and two phase mixture) will reproduce the pressure drop for two phase flow through the orifice. The effect of orifice geometry on two-phase pressure losses has been considered by selecting two pipes of 60 mm and 40 mm inner diameter and eight different orifice plates (for each pipe) with two area ratios (σ = 0.73 and σ = 0.54) and four different thicknesses (s/d = 0.025–0.59). The results obtained from numerical simulations are validated against experimental data from the literature and are found to be in good agreement.


2013 ◽  
Vol 9 (2) ◽  
pp. 1-8
Author(s):  
Alina Filip

Abstract The gas-liquid two-phase flow is characterized by continuous and local change of surface separation of phases and by their mutual interactions. Due to the instability of the flow, heat transfer and mass, a precise analytical approach is difficult to achieve. Despite these difficulties, efforts are underway to progress from the more frequent empirical studies to reliable analytical models. This requires an accurate research of the processes involved in the two phase flow and how they interact with one another. This paper aims to determine the pressure drop for a two-phase flow in a horizontal pipe of a heating plant. The author compares the results obtained by numerical simulation with existing results in the domain. The mixture is air-water, at an environmental temperature of 25°C.


2014 ◽  
Vol 67 ◽  
pp. 37-51 ◽  
Author(s):  
Hatef A. Khaledi ◽  
Ivar Eskerud Smith ◽  
Tor Erling Unander ◽  
Jan Nossen

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Shanzhi Shi ◽  
Jie Li ◽  
Xinke Yang ◽  
Congping Liu ◽  
Ruiquan Liao ◽  
...  

To explore the pressure drop variation with the viscosity of heavy oil gas-liquid two-phase flow, experiments with different viscosity gas-liquid two-phase flows are carried out. The experimental results show that the total pressure drop increases with increasing liquid viscosity when the superficial gas and liquid flow rates are the same. The liquid superficial velocity is 0.52 m/s, and the superficial gas velocity is 12 m/s in the vertical and inclined pipes, as there is a negative friction pressure drop when the superficial gas and liquid velocities are small. Additionally, the increased range of the total pressure drop decreases with increasing liquid viscosity. Considering the heavy oil gas-liquid two-phase flow, a prediction model of the pressure drop in high-viscosity liquid-gas two-phase flow is established. The new model is verified by experimental data and compared with existing models. The new model has the smallest error, basically within 15%. Based on the prediction of the wellbore pressure distribution of four wells in the BeiA oilfield, the new model prediction results are closer to the measured results, and the error is the smallest. The new model can be used to predict pressure drops in high-viscosity gas-liquid two-phase flow.


Sign in / Sign up

Export Citation Format

Share Document