scholarly journals MRI Image Segmentation of Nasopharyngeal Carcinoma Using Multi-Scale Cascaded Fully Convolutional Network

2022 ◽  
Vol 31 (3) ◽  
pp. 1771-1782
Author(s):  
Yanfen Guo ◽  
Zhe Cui ◽  
Xiaojie Li ◽  
Jing Peng ◽  
Jinrong Hu ◽  
...  
Author(s):  
Haixing Li ◽  
Haibo Luo ◽  
Wang Huan ◽  
Zelin Shi ◽  
Chongnan Yan ◽  
...  

2018 ◽  
Vol 176 ◽  
pp. 36-47 ◽  
Author(s):  
Aqing Yang ◽  
Huasheng Huang ◽  
Chan Zheng ◽  
Xunmu Zhu ◽  
Xiaofan Yang ◽  
...  

2019 ◽  
Vol 9 (10) ◽  
pp. 2042 ◽  
Author(s):  
Rachida Tobji ◽  
Wu Di ◽  
Naeem Ayoub

In Deep Learning, recent works show that neural networks have a high potential in the field of biometric security. The advantage of using this type of architecture, in addition to being robust, is that the network learns the characteristic vectors by creating intelligent filters in an automatic way, grace to the layers of convolution. In this paper, we propose an algorithm “FMnet” for iris recognition by using Fully Convolutional Network (FCN) and Multi-scale Convolutional Neural Network (MCNN). By taking into considerations the property of Convolutional Neural Networks to learn and work at different resolutions, our proposed iris recognition method overcomes the existing issues in the classical methods which only use handcrafted features extraction, by performing features extraction and classification together. Our proposed algorithm shows better classification results as compared to the other state-of-the-art iris recognition approaches.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiaodong Huang ◽  
Hui Zhang ◽  
Li Zhuo ◽  
Xiaoguang Li ◽  
Jing Zhang

Extracting the tongue body accurately from a digital tongue image is a challenge for automated tongue diagnoses, as the blurred edge of the tongue body, interference of pathological details, and the huge difference in the size and shape of the tongue. In this study, an automated tongue image segmentation method using enhanced fully convolutional network with encoder-decoder structure was presented. In the frame of the proposed network, the deep residual network was adopted as an encoder to obtain dense feature maps, and a Receptive Field Block was assembled behind the encoder. Receptive Field Block can capture adequate global contextual prior because of its structure of the multibranch convolution layers with varying kernels. Moreover, the Feature Pyramid Network was used as a decoder to fuse multiscale feature maps for gathering sufficient positional information to recover the clear contour of the tongue body. The quantitative evaluation of the segmentation results of 300 tongue images from the SIPL-tongue dataset showed that the average Hausdorff Distance, average Symmetric Mean Absolute Surface Distance, average Dice Similarity Coefficient, average precision, average sensitivity, and average specificity were 11.2963, 3.4737, 97.26%, 95.66%, 98.97%, and 98.68%, respectively. The proposed method achieved the best performance compared with the other four deep-learning-based segmentation methods (including SegNet, FCN, PSPNet, and DeepLab v3+). There were also similar results on the HIT-tongue dataset. The experimental results demonstrated that the proposed method can achieve accurate tongue image segmentation and meet the practical requirements of automated tongue diagnoses.


PLoS ONE ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. e0215676 ◽  
Author(s):  
Xu Ma ◽  
Xiangwu Deng ◽  
Long Qi ◽  
Yu Jiang ◽  
Hongwei Li ◽  
...  

2020 ◽  
Vol 24 (16) ◽  
pp. 12671-12680
Author(s):  
Feng Guo ◽  
Canghong Shi ◽  
Xiaojie Li ◽  
Xi Wu ◽  
Jiliu Zhou ◽  
...  

Author(s):  
Yancheng Bai ◽  
Wenjing Ma ◽  
Yucheng Li ◽  
Liangliang Cao ◽  
Wen Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document