scholarly journals Effect of Resistance Training and Spirulina platensis on Expression of IL-6, Gp130 Cytokines, JAK-STAT Signaling in Male Rats Skeletal Muscle

2022 ◽  
Vol 19 (1) ◽  
pp. 51-59
Author(s):  
Abdossaleh Zar ◽  
Fatemeh Ahmadi ◽  
Forouzan Karimi ◽  
Mozhgan Ahmadi ◽  
Roger Ramsbottom
2021 ◽  
Vol 22 (14) ◽  
pp. 7588
Author(s):  
Zoltan Gombos ◽  
Erika Koltai ◽  
Ferenc Torma ◽  
Peter Bakonyi ◽  
Attila Kolonics ◽  
...  

Despite the intensive investigation of the molecular mechanism of skeletal muscle hypertrophy, the underlying signaling processes are not completely understood. Therefore, we used an overload model, in which the main synergist muscles (gastrocnemius, soleus) of the plantaris muscle were surgically removed, to cause a significant overload in the remaining plantaris muscle of 8-month-old Wistar male rats. SIRT1-associated pro-anabolic, pro-catabolic molecular signaling pathways, NAD and H2S levels of this overload-induced hypertrophy were studied. Fourteen days of overload resulted in a significant 43% (p < 0.01) increase in the mass of plantaris muscle compared to sham operated animals. Cystathionine-β-synthase (CBS) activities and bioavailable H2S levels were not modified by overload. On the other hand, overload-induced hypertrophy of skeletal muscle was associated with increased SIRT1 (p < 0.01), Akt (p < 0.01), mTOR, S6 (p < 0.01) and suppressed sestrin 2 levels (p < 0.01), which are mostly responsible for anabolic signaling. Decreased FOXO1 and SIRT3 signaling (p < 0.01) suggest downregulation of protein breakdown and mitophagy. Decreased levels of NAD+, sestrin2, OGG1 (p < 0.01) indicate that the redox milieu of skeletal muscle after 14 days of overloading is reduced. The present investigation revealed novel cellular interactions that regulate anabolic and catabolic processes in the hypertrophy of skeletal muscle.


2021 ◽  
Vol 91 ◽  
pp. 108598
Author(s):  
Diego Hernández-Saavedra ◽  
Laura Moody ◽  
Xinyu Tang ◽  
Zachary J. Goldberg ◽  
Alex P. Wang ◽  
...  

2019 ◽  
Vol 6 ◽  
Author(s):  
Gary John Slater ◽  
Brad P. Dieter ◽  
Damian James Marsh ◽  
Eric Russell Helms ◽  
Gregory Shaw ◽  
...  

2015 ◽  
Vol 40 (6) ◽  
pp. 565-574 ◽  
Author(s):  
Aline Isabel da Silva ◽  
Glauber Ruda Feitoza Braz ◽  
Reginaldo Silva-Filho ◽  
Anderson Apolonio Pedroza ◽  
Diorginis Soares Ferreira ◽  
...  

Recent investigations have focused on the mitochondrion as a direct drug target in the treatment of metabolic diseases (obesity, metabolic syndrome). Relatively few studies, however, have explicitly investigated whether drug therapies aimed at changing behavior by altering central nervous system (CNS) function affect mitochondrial bioenergetics, and none has explored their effect during early neonatal development. The present study was designed to evaluate the effects of chronic treatment of newborn male rats with the selective serotonin reuptake inhibitor fluoxetine on the mitochondrial bioenergetics of the hypothalamus and skeletal muscle during the critical nursing period of development. Male Wistar rat pups received either fluoxetine (Fx group) or vehicle solution (Ct group) from the day of birth until 21 days of age. At 60 days of age, mitochondrial bioenergetics were evaluated. The Fx group showed increased oxygen consumption in several different respiratory states and reduced production of reactive oxygen species, but there was no change in mitochondrial permeability transition pore opening or oxidative stress in either the hypothalamus or skeletal muscle. We observed an increase in glutathione S-transferase activity only in the hypothalamus of the Fx group. Taken together, our results suggest that chronic exposure to fluoxetine during the nursing phase of early rat development results in a positive modulation of mitochondrial respiration in the hypothalamus and skeletal muscle that persists into adulthood. Such long-lasting alterations in mitochondrial activity in the CNS, especially in areas regulating appetite, may contribute to permanent changes in energy balance in treated animals.


1997 ◽  
Vol 273 (4) ◽  
pp. E682-E687 ◽  
Author(s):  
Jared P. Jones ◽  
G. Lynis Dohm

Transport of glucose across the plasma membrane by GLUT-4 and subsequent phosphorylation of glucose by hexokinase II (HKII) constitute the first two steps of glucose utilization in skeletal muscle. This study was undertaken to determine whether epinephrine and/or insulin regulates in vivo GLUT-4 and HKII gene transcription in rat skeletal muscle. In the first experiment, adrenodemedullated male rats were fasted 24 h and killed in the control condition or after being infused for 1.5 h with epinephrine (30 μg/ml at 1.68 ml/h). In the second experiment, male rats were fasted 24 h and killed after being infused for 2.5 h at 1.68 ml/h with saline or glucose (625 mg/ml) or insulin (39.9 μg/ml) plus glucose (625 mg/ml). Nuclei were isolated from pooled quadriceps, tibialis anterior, and gastrocnemius muscles. Transcriptional run-on analysis indicated that epinephrine infusion decreased GLUT-4 and increased HKII transcription compared with fasted controls. Both glucose and insulin plus glucose infusion induced increases in GLUT-4 and HKII transcription of twofold and three- to fourfold, respectively, compared with saline-infused rats. In conclusion, epinephrine and insulin may regulate GLUT-4 and HKII genes at the level of transcription in rat skeletal muscle.


2015 ◽  
Vol 71 (10) ◽  
pp. 1273-1280 ◽  
Author(s):  
María Laura Messi ◽  
Tao Li ◽  
Zhong-Min Wang ◽  
Anthony P. Marsh ◽  
Barbara Nicklas ◽  
...  

1995 ◽  
Vol 9 (3) ◽  
pp. 155-159 ◽  
Author(s):  
Christine L. Ruther ◽  
Catherine L. Golden ◽  
Robert T. Harris ◽  
Gary A. Dudley

Sign in / Sign up

Export Citation Format

Share Document