scholarly journals Inhibitory Effect of N, N-Dimethylhexadecylamine on the Growth of White-Rot Fungus Trametes versicolor (L.) in Wood

Phyton ◽  
2021 ◽  
Vol 90 (1) ◽  
pp. 193-206
Author(s):  
Wilber Montejo-Mayo ◽  
Eduardo D韆s-Rivera ◽  
Mauro Mart韓ez-Pacheco ◽  
Abril Munro-Rojas ◽  
Enrique Ambriz-Parra ◽  
...  
BioResources ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 59-69
Author(s):  
Seyyed Khalil Hosseini Hashemi ◽  
Ahmad Jahan Latibari

Walnut (Juglans regia L.) heartwood extractives were identified and their potential for protection of poplar wood was evaluated. Test specimens were prepared from poplar wood (Populus nigra L.) to meet BS 838:1961 requirements. Samples were impregnated with heartwood extractive solution (1.5, 2.5, and 3.5% w/w in ethanol-toluene), followed by 5 hours vacuum desiccator technique to reach complete saturation. Impregnated specimens were exposed to white-rot fungus (Trametes versicolor) for 14 weeks according to BS 838:1961 applying the kolle-flask method. The weight loss of samples was determined after exposure to white-rot fungus. The highest weight loss (36.96%) was observed for untreated control samples and the lowest weight loss (30.40%) was measured in samples treated with 1.5% extractives solution. The analyses of the extracts using GC/MS indicated that major constituents are benzoic acid,3,4,5-tri(hydroxyl) and gallic acid (44.57 %). The two toxic components in the heartwood are juglone (5.15 %) and 2,7-dimethylphenantheren (5.81 %).


2019 ◽  
Vol 33 (8) ◽  
pp. 1048-1060 ◽  
Author(s):  
Hamid R Taghiyari ◽  
Ehsan Bari ◽  
Asghar Sistani ◽  
Mohammad Najafian ◽  
Mohammad Ali Tajick Ghanbary ◽  
...  

The present study investigated the effects of exposure of bamboo–plastic composites to three aggressive fungi species on mass loss values. Polyvinyl chloride was used as the synthetic matrix of the composite. Three mixing combinations were used for bamboo–polymer composites, namely 40/60, 50/50, and 60/40. The injection-molded process was employed to produce the composites. Specimens were prepared according to modified European standard specifications (EN-113) to be exposed to white-, brown-, and soft-rot fungi each month for 4 months. The results indicated that the soft-rot fungus ( Chaetomium globosum) generally caused higher mass losses in all bamboo/plastic combination ratios. Brown- and soft-rot fungi demonstrated different mass losses on different combination ratios. However, the white-rot fungus ( Trametes versicolor) caused nearly the same mass losses on all three combination ratios. Moreover, T. versicolor was highly significant with respect to mass loss and moisture content. It can therefore be concluded that the T. versicolor has a different decay metabolism when compared to the brown- and soft-rot fungus used in this study.


Holzforschung ◽  
1999 ◽  
Vol 53 (3) ◽  
pp. 247-252 ◽  
Author(s):  
M.J. Martínez-Inigo ◽  
P. Immerzeel ◽  
A. Gutierrez ◽  
J.C. del Río ◽  
R. Sierra-Alvarez

SummaryThe fungal degradation of lipophilic extractives in sapwood and heartwood from Scots pine (Pinus sylvestris) was studied. In sapwood, the white rot fungi,Bjerkanderasp. andFunalia trogii, removed higher amounts of extractives than the sapstain strains,Ophiostoma ainoaeandCeratocystis allantospora. Triglycerides, long chain fatty acids, steryl esters and waxes in pine sapwood were almost completely degraded by all the fungi. Sterols and resin acids were also extensively degraded by the white rot strains; however, these components were not or only poorly removed by the sapstain fungi. The removal of total extractives by all the fungal strains was higher in sapwood as compared to heartwood. The highly concentrated extractive fraction in pine heartwood mainly consists of resin acids. As observed in sapwood, sapstain were also poorly effective in the degradation of the resin acids present in heartwood. The fungal degradation of heartwood extractives was not only limited by the degradative ability of the various test microorganisms, but also by the inhibitory effect exerted by the extractive fraction. The white rot fungusF. trogiiwas particularly inhibited on heartwood.Bjerkanderasp. showed a higher tolerance to toxic extractives and was the most efficient fungus in degrading extractive constituents in both Scots pine heartwood and sapwood. Therefore,Bjerkanderasp. strain BOS55 should be considered as a potential agent for pitch control in pulp and paper manufacture.


2015 ◽  
Vol 77 (1) ◽  
pp. 28-38 ◽  
Author(s):  
Wan Nurul Izyani Wan Mohd Zawawi ◽  
Azmi Fadziyana Mansor ◽  
Nurul Sakinah Othman ◽  
Nur Atikah Mohidem ◽  
Nik Ahmad Nizam Nik Malek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document