resin acids
Recently Published Documents


TOTAL DOCUMENTS

445
(FIVE YEARS 52)

H-INDEX

36
(FIVE YEARS 4)

Author(s):  
Е.Д. Скаковский ◽  
Л.Ю. Тычинская ◽  
Е.И. Гапанькова ◽  
И.А. Латышевич ◽  
А.Г. Шутова ◽  
...  

Методом ЯМР проведен анализ состава живиц восьми видов сосен подрода Pinus: черной австрийской (P. nigra), аллепской (P. halepensis), горной (P. montana), жесткой (P. rigida), Коха (P. kochiana Klotsch), Муррея (P. murrayana Balf), обыкновенной (P. sylvestris) и Палласа (P. nigra subsp. pallasiana), произрастающих в различных районах. Кроме того, исследовано содержание смоляных кислот, выделенных в 1963 г. из живиц трех видов сосен того же подрода: черной австрийской, крючковатой (P. uncinata) и кулундинской (P. sylvestris ssp. Kulundensis). Установлено, что состав живиц названных видов сосен хорошо описывается наличием восьми смоляных кислот (абиетиновая, дегидроабиетиновая, изопимаровая, левопимаровая, неоабиетиновая, палюстровая, пимаровая и сандаракопимаровая) и девяти монотерпенов (камфен, 3-карен, лимонен, мирцен, α-пинен, β-пинен, терпинолен, βфелландреен, п-цимол). Количественное содержание этих смоляных кислот зависит от многих факторов (вида сосен, времени и места сбора живицы, а также условий сбора и хранения образцов). Кроме того, наблюдаются реакции изомеризации и окисления, приводящие к перераспределению состава. В изученных живицах содержание монотерпенов сильно отличается, являясь наименьшим у сосны аллепской и наибольшим у сосны обыкновенной. The NMR method was used to analyze oleoresin composition of eight species of Pinus subgenus: Austrian black (P. nigra), Alleps (P. halepensis), mountain (P. montana), hard (P. rigida), Koch (P. kochiana Klotsch), Murray (P. murrayana Balf), common (P. sylvestris) and Pallas (P. nigra subsp. pallasiana) growing in different areas. In addition, the content of resin acids isolated in 1963 from the oleoresins of three species of pines belonging to the same subgenus: black Austrian, hooked (P. uncinata) and Kulunda (P. sylvestris ssp. Kulundensis) was studied. It was found that the oleoresin composition of the named pine species is well described by the presence of eight resin acids (abietic, dehydroabietic, isopimaric, levopimaric, neoabietic, palustrine, pimaric and sandaracopymaric) and nine monoterpenes (camphor, 3-caren, limonene, myrcene, α-pinene, β-pinene, terpinolen, β-felandreene, p-cymol). The quantitative content of these resin acids depends on many factors (pine species, time and place of oleoresin collection, and sample collection and storage conditions). In addition, isomerization and oxidation reactions are observed, leading to a redistribution of the composition. In the studied oleoresins, the content of monoterpenes differs greatly, being the lowest in Alleps pine and the highest in Scots pine.


2021 ◽  
Author(s):  
Wu-Ji Lai ◽  
Jia-Hao Lu ◽  
Rui Jiang ◽  
Lei Zeng ◽  
Ai-qun Wu ◽  
...  

Abstract Acrylopimaric acid is considered one of the possible substitutes for petroleum-based polymeric monomers, which is an important industrial product. Resin acids were isomerized to form levopimaric acid(4), which reacted with acrylic acid to synthesize isomers of acrylopimaric acid. Density functional theory calculation was used to investigate the reaction mechanisms with seven reaction paths in five different solutions. The values of ΔG were sorted from highest to lowest by levopimaric acid(4), neoabietic acid(3), palustric acid(2), and bietic acid(1). From the perspective of dynamics, the energy barrier in the isomerization of palustric acid(2) to levopimaric acid(4) was the lowest, whereas the highest energy barrier was the isomerization of neoabietic acid(3) to levopimaric acid(4) in the same solution. The addition reaction of levopimaric acid(4) and acrylic acid(5) to acrylopimaric acid c(8) was the optimal reaction path dynamically. However, ΔG of acrylopimaric acid c(8) was higher than that of acrylopimaric acid d(9). In general, the rates of isomerization reactions for rosin resin acids and addition reaction for acrylopimaric acid in water were higher than those in other solvents. HOMO-LUMO and ESP were analyzed for 8 kinds of molecules. For acylpyimaric acid, the non-planar six-memed ring and the C-C double bonds were easily attacked by nucleophile, while the non-planar six-memed ring and the carboxyl group are easily reacted with electrophiles. The highest electrostatic potential of the eight molecules is located at H of the carboxyl group, while the highest electrostatic potential is located at C-O double bond of the carboxyl group.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2391
Author(s):  
Enrica Alicandri ◽  
Stefano Covino ◽  
Bartolomeo Sebastiani ◽  
Anna Rita Paolacci ◽  
Maurizio Badiani ◽  
...  

A quali-quantitative analysis of diterpenoid composition in tissues obtained from different organs of Pinus nigra subsp. laricio (Poiret) Maire (Calabrian pine) was carried out. Diterpene resin acids were the most abundant diterpenoids across all the examined tissues. The same nine diterpene resin acids were always found, with the abietane type prevailing on the pimarane type, although their quantitative distribution was found to be remarkably tissue-specific. The scrutiny of the available literature revealed species specificity as well. A phylogeny-based approach allowed us to isolate four cDNAs coding for diterpene synthases in Calabrian pine, each of which belonging to one of the four groups into which the d3 clade of the plants’ terpene synthases family can be divided. The deduced amino acid sequences allowed predicting that both monofunctional and bifunctional diterpene synthases are involved in the biosynthesis of diterpene resin acids in Calabrian pine. Transcript profiling revealed differential expression across the different tissues and was found to be consistent with the corresponding diterpenoid profiles. The isolation of the complete genomic sequences and the determination of their exon/intron structures allowed us to place the diterpene synthase genes from Calabrian pine on the background of current ideas on the functional evolution of diterpene synthases in Gymnosperms.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3045
Author(s):  
Krzysztof Lipiński ◽  
Juhani Vuorenmaa ◽  
Magdalena Mazur-Kuśnirek ◽  
Katarzyna Sartowska-Żygowska ◽  
Hannele Kettunen

Dietary coniferous resin acids have previously been suggested to support the intestinal integrity of broiler chickens by reducing mucosal collagen degradation. The present study examined the effects of resin acid concentrate (RAC) on broiler performance and litter quality. In trial 1, RAC was added to diets at 0, 125, 250, or 1250 g/ton, while in trials 2 and 3, RAC dosing was 0 or 175 g/ton. Bird weight, feed consumption, mortality, feed conversion ratio (FCR), European Efficiency Index (EEI), litter moisture, and footpad dermatitis (FPD) lesions were measured. In trial 1, RAC at 125 and 250 g/ton improved weight gain and EEI, while RAC at 1250 g/ton group did not differ from control. Feed consumption, FCR, FPD scores and mortality were similar in all treatments, but litter quality was improved by all doses of RAC. In trials 2 and 3, RAC increased the final weight of birds, improved FCR, EEI, and litter quality, but had no effects in other parameters. In summary, RAC at 125–250 g/ton improved bird performance and thus shows promise as a feed additive. The dryer litter in RAC treatments may suggest improved intestinal condition as a response to in-feed resin acids.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nada Verdel ◽  
Tomaž Rijavec ◽  
Iaroslav Rybkin ◽  
Anja Erzin ◽  
Žiga Velišček ◽  
...  

In the wood-free paper industry, whitewater is usually a mixture of additives for paper production. We are currently lacking an efficient, cost-effective purification technology for their removal. In closed whitewater cycles the additives accumulate, causing adverse production problems, such as the formation of slime and pitch. The aim of our study was to find an effective bio-based strategy for whitewater treatment using a selection of indigenous bacterial isolates. We first obtained a large collection of bacterial isolates and then tested them individually by simple plate and spectrophotometric methods for their ability to degrade the papermaking additives, i.e., carbohydrates, resin acids, alkyl ketene dimers, polyvinyl alcohol, latex, and azo and fluorescent dyes. We examined correlation between carbon source use, genera, and inoculum source of isolates using two multivariate methods: principal component analysis and FreeViz projection. Of the 318 bacterial isolates, we selected a consortium of four strains (Xanthomonadales bacterium sp. CST37-CF, Sphingomonas sp. BLA14-CF, Cellulosimicrobium sp. AKD4-BF and Aeromonas sp. RES19-BTP) that degrade the entire spectrum of tested additives by means of dissolved organic carbon measurements. A proof-of-concept study on a pilot scale was then performed by immobilizing the artificial consortium of the four strains and inserting them into a 33-liter, tubular flow-through reactor with a retention time of < 15 h. The consortium caused an 88% reduction in the COD of the whitewater, even after 21 days.


2021 ◽  
Author(s):  
Stephen Bell ◽  
Derek J Fairley ◽  
Hannele Kettunen ◽  
Juhani Vuorenmaa ◽  
Juha Orte ◽  
...  

Chemical methods of virus inactivation are used routinely to prevent viral transmission in both a personal hygiene capacity but also in at-risk environments like hospitals. Several virucidal products exist, including hand soaps, gels and surface disinfectants. Resin acids, which can be derived from Tall oil produced from trees, have been shown to exhibit anti-bacterial activity. However, whether these products or their derivatives have virucidal activity is unknown. Here, we assessed the capacity of Rosin soap to inactivate a panel of pathogenic mammalian viruses in vitro. We show that Rosin soap can inactivate the human enveloped viruses: influenza A virus (IAV), respiratory syncytial virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For IAV, rosin soap could provide a 100,000-fold reduction in infectivity. However, Rosin soap failed to affect the non-enveloped encephalomyocarditis virus (EMCV). The inhibitory effect of Rosin soap against IAV infectivity was dependent on its concentration but not dependent on incubation time nor temperature. Together, we demonstrate a novel chemical inactivation method against enveloped viruses, which could be of use in preventing virus infections in certain settings.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3836
Author(s):  
Larisa Popova ◽  
Olga Ivanchenko ◽  
Evgeniia Pochkaeva ◽  
Sergey Klotchenko ◽  
Marina Plotnikova ◽  
...  

The increased complexity due to the emergence and rapid spread of new viral infections prompts researchers to search for potential antiviral and protective agents for mucous membranes among various natural objects, for example, plant raw materials, their individual components, as well as the products of their chemical modification. Due to their structure, resin acids are valuable raw materials of natural origin to synthesize various bioactive substances. Therefore, the purpose of this study was to confirm the possibility of using resin acid derivatives for the drug design. As a result, we studied the cytotoxicity and biological activity of resin acid derivatives. It was shown that a slight decrease in the viral load in the supernatants was observed upon stimulation of cells (II) compared with the control. When using PASS-online modeling (Prediction of Activity Spectra for Substances), the prediction of the biological activity spectrum showed that compound (I) is capable of exhibiting antiviral activity against the influenza virus. The use of the SWISS-ADME webserver to reveal the drug-like properties of compounds did not directly indicate the presence of antiviral activity. These results indicate the potential of resin acid derivatives as a starting point for extensive research in the study of biological activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mana Iwata ◽  
Ana Gutiérrez ◽  
Gisela Marques ◽  
Grzegorz Sabat ◽  
Philip J. Kersten ◽  
...  

AbstractWood extractives, solvent-soluble fractions of woody biomass, are considered to be a factor impeding or excluding fungal colonization on the freshly harvested conifers. Among wood decay fungi, the basidiomycete Phlebiopsis gigantea has evolved a unique enzyme system to efficiently transform or degrade conifer extractives but little is known about the mechanism(s). In this study, to clarify the mechanism(s) of softwood degradation, we examined the transcriptome, proteome, and metabolome of P. gigantea when grown on defined media containing microcrystalline cellulose and pine sapwood extractives. Beyond the conventional enzymes often associated with cellulose, hemicellulose and lignin degradation, an array of enzymes implicated in the metabolism of softwood lipophilic extractives such as fatty and resin acids, steroids and glycerides was significantly up-regulated. Among these, a highly expressed and inducible lipase is likely responsible for lipophilic extractive degradation, based on its extracellular location and our characterization of the recombinant enzyme. Our results provide insight into physiological roles of extractives in the interaction between wood and fungi.


2021 ◽  
Vol 25 ◽  
Author(s):  
Hisashi Kato-Noguchi

: The spices of Pinus, the most widespread genus of the Pinaceae family in the northern hemisphere, often have sparse understory vegetation. However, sunlight intensity on the pine forest floor is sufficient for undergrowth to grow. Allelopathy, therefore, is considered to be involved in the formation of the sparse understory vegetation. The evidence for the allelopathy of several pine species has accumulated in the literature over decades. Extracts of pine needle-like leaves, roots, litter, and soil under pine trees suppressed several plant species, including undergrowth plant species of pine forests. A substantial number of secondary metabolites such as terpenoids, phenolics, cinnamic acids, carboxylic acids, fatty acids, and flavonoids have been identified in pine needles and roots, litter and soil under pine trees. The evidence also suggests that some of these compounds are probably released into the soil through the decomposition of the plant litter, and into the surrounding environment as volatiles. The most active compounds found in the pine soil were methyl 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid; both compounds may also be formed through the degradation of resin acids, which were found abundantly in pine trees. Bioactive compounds released into the soil and surrounding environment possibly act as allelochemicals and suppress the invasion of undergrowth plants into the forests, resulting in the establishment of the sparse understory vegetation. The paper summarized the allelopathic activity of 16 Pinus species and 38 allelochemicals.


Sign in / Sign up

Export Citation Format

Share Document