scholarly journals In Vitro-Propagation of Agave tequilana Weber cv. azul in a Temporary Immersion System

Phyton ◽  
2022 ◽  
Vol 91 (1) ◽  
pp. 83-96
Author(s):  
Otilio V醶quez-Mart韓ez ◽  
H閏tor Gordon Nez-Palenius ◽  
Eugenio M. P閞ez-Molphe Balch ◽  
Mauricio Valencia-Posadas ◽  
Luis P閞ez-Moreno ◽  
...  
Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2121
Author(s):  
María José Marchant ◽  
Paula Molina ◽  
Miriam Montecinos ◽  
Leda Guzmán ◽  
Cristobal Balada ◽  
...  

Curcuma longa (C. longa) is widely known for its medicinal properties. However, the potential overexploitation of this plant raises doubts about its long-term survival on Rapa Nui. Micropropagation using a temporary immersion system (TIS) could be the basis for developing a cost-effective and highly productive method of large-scale cultivation of this plant. Our objective was to develop and refine the in vitro multiplication system for mass propagation of C. longa, and thus help restore the fragile ecosystem of Rapa Nui. Three parameters were evaluated: number of explants per flask, flask capacity, and LEDs spectrum. For each parameter evaluated, four aspects were analyzed: fresh weight per plant, number of shoots, percentage of non-sprouting explants, and the proliferation rate. The use of 30 explants per two-liter flask results in more plants with high fresh biomass than other configurations. In addition, LEDs with a red:blue ratio of 2:1 provided the best lighting conditions for in vitro propagation and positively affected C. longa proliferation and rooting. Therefore, our results show that 30 explants per two-liter flask and an LED source with a red:blue ratio of 2:1 allow a higher number of C. longa plants to be obtained using TIS.


2021 ◽  
Vol 14 (8) ◽  
pp. 747
Author(s):  
Eder Villegas Sánchez ◽  
Mariana Macías-Alonso ◽  
Soraya Osegueda Robles ◽  
Lisset Herrera-Isidrón ◽  
Hector Nuñez-Palenius ◽  
...  

Emerging infectious diseases have become a major global problem with public health and economic consequences. It is an urgent need to develop new anti-infective therapies. The natural diterpene carnosol exhibit a wide variety of interesting antibacterial and antiviral properties, and it is considered a theoretical inhibitor of COVID-19 Mpro. However, this compound is present in the family Lamiaceae in low quantities. To obtain carnosol in concentrations high enough to develop pharmacological studies, we evaluated the efficiency of a micropropagation protocol of Rosmarinus officinalis using a solid medium and a temporary immersion system (TIS), as well as the effect of 6-benzylaminopurine (6-BAP) and α-naphthaleneacetic acid (NAA) on the growth of shoots. Moreover, we developed and validated an analytical method to quantify carnosol using the H-point standard additions method in the high-performance liquid chromatography diode array detector (HPLC-DAD). After 30 days of culture, TIS produced the maximum number of shoots per explant (24.33 ± 1.15) on a liquid medium supplemented with 6-BAP at 5.0 mg L−1. Next, we also evaluated the effect of immersion time and frequency for TIS. After 72 days of culture, the best results were obtained with an immersion cycle of 1 min every 12 h, yielding 170.33 ± 29.40 shoots. The quantification of carnosol on the samples was performed at a flow rate of 1.2 mL min−1 using binary isocratic mobile phase system 60:40 (v/v) 10 mM formic acid (pH 3.0) (A) and acetonitrile (B) on a reverse-phase column. The content of carnosol in the in vitro cultures was around 8-fold higher than in the wild plant. The present study represents an efficient alternative method to obtain carnosol for its pre-clinical and clinical development.


2016 ◽  
Vol 81 (1) ◽  
Author(s):  
Hayati MINARSIH ◽  
Imron RIYADI ◽  
. SUMARYONO ◽  
Asmini BUDIANI

bstractTo achieve Indonesian sugar self-sufficiency in2014, the national production needs to be escalatedthrough land extensification that requires a largenumbers of cane planting materials. This can be achievedby mass propagation of sugarcane through in vitroculture. Solid medium is commonly used for callusproliferation in sugarcane tissue culture. However, solidmedium is considered inefficient in terms of plantletproduction level, labour and space. The use of liquidmedium may solve the problem by allowing automationto increase plantlet production scale and uniformity.Temporary immersion system (TIS) is based on a shortperiodic immersion of explants in a liquid medium for aspecific frequency and duration. Research on in vitromass propagation of sugarcane using TIS was conductedat the Indonesian Biotechnology Research Institute forEstate Crops. Callus initiated from immature unfoldedleaves of PSJT 941 and PS 881 was cultured on liquidMS medium in TIS with different frequencies (12 and24 h) and durations (1 and 3 min) of immersion. Eachtreatment was replicated three times. The callus biomassof two elite cane varieties (PSJT 941 and PS 881)cultured in TIS for six weeks was higher (2 – 4 times fold)than that of on solid medium. The PSJT 941 varietyreached the highest calli biomass with immersion forthree min every 24 h. However, PS 881 variety reachedits highest biomass with immersion for one minute every24 h. The propagation of sugarcane using TIS culturewas proven to produce higher calli biomass up to fourfolds and to form more numbers and uniform shootscompared to the solid medium culture. The callus wassuccesfully regenerated to shoots and plantlets.AbstrakUntuk mencapai swasembada gula, perlu dilakukanpeningkatan produksi gula nasional melalui perluasanareal pertanaman tebu sehingga diperlukan bibit dalamjumlah besar. Hal tersebut dapat diatasi antara laindengan perbanyakan tebu melalui kultur in vitro. Peng-gunaan medium padat pada perbanyakan kalus tebumelalui kultur in vitro merupakan teknik yang umumdigunakan saat ini. Akan tetapi penggunaan mediumpadat dianggap kurang efisien dalam hal jumlah planletyang diproduksi, tenaga kerja dan ruang digunakan.Penggunaan medium cair dapat mengatasi kelemahantersebut dengan dimungkinkannya otomatisasi sehinggadapat meningkatkan skala produksi secara massal dankeseragaman planlet. Sistem perendaman sesaat (SPS)merupakan teknik kultur in vitro dalam medium cairmenggunakan bejana bersekat dimana kontak antaraeksplan dan medium terjadi hanya secara sesaat danperiodik. Penelitian perbanyakan massal bibit tebumelalui SPS dilakukan di Balai Penelitian BioteknologiPerkebunan Indonesia. Kalus diinisiasi dari daun meng-gulung varietas PSJT 941 dan PS 881 yang ditumbuhkanpada media MS cair dalam kultur SPS dengan frekuensiyang berbeda (12 dan 24 jam) dan lama perendaman (1dan 3 menit). Setiap perlakuan diulang tiga kali. Bobotbasah (biomassa) kalus dari dua varietas tebu (PSJT 941dan PS 881) yang ditumbuhkan dengan metode SPSsetelah enam minggu menunjukkan pening-katan yanglebih tinggi yaitu antara 2 - 4 kali lipat dibandingkandengan kontrol (media padat). Peningkatan biomassatertinggi pada varietas PSJT 941 diperoleh pada per-lakuan SPS dengan interval perendaman 24 jam dan lamaperendaman tiga menit. Sedangkan pada PS 881,peningkatan tertinggi biomassa diperoleh pada intervalperendaman 24 jam dan lama perendaman satu menit.Perbanyakan dengan metode SPS terbukti dapat mening-katkan biomassa kalus lebih dari empat kali lipat danpembentukan tunas yang lebih seragam dibandingkandengan pada media padat. Kalus yang dihasilkan dapatdiregenerasikan menjadi tunas dan planlet.


2021 ◽  
pp. 113-120
Author(s):  
A.L. Arruda ◽  
F.R. Nerbass ◽  
A.A. Kretzschmar ◽  
L. Rufato ◽  
A.J. Posser ◽  
...  

2020 ◽  
Vol 12 (2) ◽  
pp. 277-288
Author(s):  
Larbi ABAHMANE

Date palm micropropagation is commonly performed on gelled media. However, it’s typically a labour-intensive system and consequently plantlets production cost is very high. Therefore, it is necessary to develop cost effective alternatives without compromising the quality of produced plant material. New technologies based on liquid media in bioreactors have been developed to reduce the handling time, while increasing the multiplication rates and plant quality. The present research focuses on the comparison between Temporary Immersion System (TIS) and gelled media (GM) culture systems of two Moroccan date palm varieties ‘Mejhool’ and ‘Boufeggous’. Obtained results indicated that shoot and root lengths as well as shoot fresh and dry weights were significantly (P < 0.05) higher in TIS compared to GM. Moreover, the vigour of obtained shoots was better in TIS compared to GM. Therefore, TIS-derived plantlets have shown an acclimatization rate of 95% while this rate for GM-derived plantlets was 82%. Hence, bioreactors, as a growing system based on TIS, can be a valid alternative to conventional systems for in vitro culture, resulting in a reduction of cost, shelving area requirements, labour and time for the mass propagation of date palm cultivars.


Sign in / Sign up

Export Citation Format

Share Document