scholarly journals MODELING OF VIBRATIONAL PROCESSES IN DISCRETE MATRIX STRUC-TURES APPROACH

Author(s):  
Yuriy Penkin ◽  
Georgi Hara ◽  
Alina Fedoseeva

In the article are presented general principles of modeling vibrations in discrete structures formed in the form of special matrix forms of the Latin square (Sudoku type) are presented. The signs of structural and functional self-similarity for the matrix structures of standard Sudoku grids are formulated. It is shown that the structural principle can be interpreted as the implementation of the second iteration in the scale scaling algorithm characteristic of fractal objects. The signs of functional self-similarity of structures include the property of additive conservation of grid shapes to the requirements of Sudoku, which is formulated as a theorem. It is proved that the matrix sums of Sudoku constants and grids of arbitrary sizes, obtained taking into account the introduced cyclic ranking rule, will satisfy the three required Sudoku requirements. It is determined that by performing a given sequence of group shift operators, it is possible to establish a specific scenario for dynamically changing the state of a structure on a discrete time scale. It has been established that the evolution operators of linear-type group translations lead to matrix transformations of Sudoku grids from the set of equivalent ones (concerning the original ones), and the vortex-type group shifts operators to matrix transformations from many essentially different networks. The modes of harmonic, chaotic, and hybrid vibrations for structures of arbitrary size are considered. The requirements for transformations of the operators of the evolution of structures that provide the implementation of the considered modes are formulated. The results of modeling chaotic oscillatory processes by cycles of states of a discrete system that form similarities of attractor paths are analyzed. The principle of synchronization of chaotic states of matrix structures is established. The possibility of simulating the modes of beatings of oscillations in discrete cellular structures organized in the form of two-level matrix forms is substantiated. Specific examples show the results of simulating beatings of oscillations in cycles of changing states of a discrete system for two types of beats: similar to the result of a superposition of harmonic vibrations at multiple frequencies in the theory of radio signals, as well as noise-like beats.

2020 ◽  
Vol 29 (2) ◽  
pp. 196-215
Author(s):  
Luke Connolly

This essay proposes that the picture of a broken circle encountered by Watt during the second part of his tale marks a crucial collision point between Beckett's literary and mathematical interests and triggers a process of fractal scaling self-similarity. Building on recent interest concerning the role of the mathematics and mathematical forms found in Beckett's work, I argue that the broken circle depicted in the picture from Watt is a geometric form which (re)appears within at least three interlocking scales throughout Beckett's novel-length prose: (i) its moment of arrival in the picture from Watt, (ii) a macroscopic reinscription in the names of the protagonists populating the five novels spanning Watt through to The Unnamable and (iii) buried within the narratological depths of How It Is. As a structural principle, the interminable irregularity of fractals offered Beckett a viable solution for what he considered the defining task of the modern artist: ‘to find a form to accommodate the mess’. Moreover, the specific shape selected for his fractal is shown to contain within its geometry one of Beckett's most universal and pressing concerns: the inevitable insufficiency of language. Therefore, although this essay restricts itself to examining Beckett's novel-length prose, the idea of a broken circle fractal promises to provide a valuable heuristic through which to reassess the author's other generic avenues. Fractals thus offer a means through which one can bind together the length and breadth of Beckett's oeuvre without ever reducing dynamic chaos to stable order.


Mathematics ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 268 ◽  
Author(s):  
Kuddusi Kayaduman ◽  
Fevzi Yaşar

In 1978, the domain of the Nörlund matrix on the classical sequence spaces lp and l∞ was introduced by Wang, where 1 ≤ p < ∞. Tuğ and Başar studied the matrix domain of Nörlund mean on the sequence spaces f0 and f in 2016. Additionally, Tuğ defined and investigated a new sequence space as the domain of the Nörlund matrix on the space of bounded variation sequences in 2017. In this article, we defined new space and and examined the domain of the Nörlund mean on the bs and cs, which are bounded and convergent series, respectively. We also examined their inclusion relations. We defined the norms over them and investigated whether these new spaces provide conditions of Banach space. Finally, we determined their α­, β­, γ­duals, and characterized their matrix transformations on this space and into this space.


2021 ◽  
Vol 71 (6) ◽  
pp. 1375-1400
Author(s):  
Feyzi Başar ◽  
Hadi Roopaei

Abstract Let F denote the factorable matrix and X ∈ {ℓp , c 0, c, ℓ ∞}. In this study, we introduce the domains X(F) of the factorable matrix in the spaces X. Also, we give the bases and determine the alpha-, beta- and gamma-duals of the spaces X(F). We obtain the necessary and sufficient conditions on an infinite matrix belonging to the classes (ℓ p (F), ℓ ∞), (ℓ p (F), f) and (X, Y(F)) of matrix transformations, where Y denotes any given sequence space. Furthermore, we give the necessary and sufficient conditions for factorizing an operator based on the matrix F and derive two factorizations for the Cesàro and Hilbert matrices based on the Gamma matrix. Additionally, we investigate the norm of operators on the domain of the matrix F. Finally, we find the norm of Hilbert operators on some sequence spaces and deal with the lower bound of operators on the domain of the factorable matrix.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Murat Kirişci

The -space of all sequences is given as such that converges and is a null sequence which is called the Hahn sequence space and is denoted by . Hahn (1922) defined the space and gave some general properties. G. Goes and S. Goes (1970) studied the functional analytic properties of this space. The study of Hahn sequence space was initiated by Chandrasekhara Rao (1990) with certain specific purpose in the Banach space theory. In this paper, the matrix domain of the Hahn sequence space determined by the Cesáro mean first order, denoted by , is obtained, and some inclusion relations and some topological properties of this space are investigated. Also dual spaces of this space are computed and, matrix transformations are characterized.


Author(s):  
C. G. Lascarides ◽  
I. J. Maddox

Let A = (ank) be an infinite matrix of complex numbers ank (n, k = 1, 2,…) and X, Y two subsets of the space s of complex sequences. We say that the matrix A defines a (matrix) transformation from X into Y, and we denote it by writing A: X → Y, if for every sequence x = (xk)∈X the sequence Ax = (An(x)) is in Y, where An(x) = Σankxk and the sum without limits is always taken from k = 1 to k = ∞. The sequence Ax is called the transformation of x by the matrix A. By (X, Y) we denote the class of matrices A such that A: X → Y.


2020 ◽  
Author(s):  
Hossein Ghadjari ◽  
David Knudsen ◽  
Susan Skone

&lt;p&gt;Ionospheric irregularities are fluctuations or structures of plasma density that affect the propagation of radio signals. Whenever large-scale irregularities break up into meso and small-scale irregularities, these processes become similar to a turbulence cascade. In order to have a better comparison between this and plasma density irregularities, we study different orders of structure functions of plasma density of total loss of lock events measured with the faceplate measurements of plasma density and the GPS measurements from the Swarm mission. Total loss of lock of GPS signal is a physical proxy for severe degradation of GPS signals. In addition to different orders of structure-function, we study the existence of self-similarity or multifractality of plasma density of total loss of lock events to investigate any possible intermittent fluctuations.&amp;#160;&lt;/p&gt;


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Uğur Kadak ◽  
Hakan Efe

In some cases, the most general linear operator between two sequence spaces is given by an infinite matrix. So the theory of matrix transformations has always been of great interest in the study of sequence spaces. In the present paper, we introduce the matrix transformations in sequence spaces over the fieldC*and characterize some classes of infinite matrices with respect to the non-Newtonian calculus. Also we give the necessary and sufficient conditions on an infinite matrix transforming one of the classical sets overC*to another one. Furthermore, the concept for sequence-to-sequence and series-to-series methods of summability is given with some illustrated examples.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Stanislav V. Kudlai

This paper derives the algebraic characteristic of the matrix transformations class by the method of isomorphic mappings on the algebraic characteristic of the class of vector transformations using the primitive program algebras. The paper also describes the hardware implementation of the matrix operations accelerator based on the obtained results. The urgency of the work is caused by the fact that today there is a rapid integration of computer technology in all spheres of society and, as a consequence, the amount of data that needs to be processed per unit time is constantly increasing. Many problems involving large amounts of complex computation are solved by methods based on matrix operations. Therefore, the study of matrix calculations and their acceleration is a very important task. In this paper, as a contribution in this direction, we propose a study of the matrix transformations class using signature operations of primitive program algebra such as multi place superposition, branching, cycling, which are refinements of the most common control structures in most high-level programming languages, and also isomorphic mapping. Signature operations of primitive program algebra in combination with basic partial-recursive matrix functions and predicates allow to realize the set of all partial-recursive matrix functions and predicates. Obtained the result on the basis of matrix primitive program algebra. Isomorphism provides the reproduction of partially recursive functions and predicates for matrix transformations as a map of partially recursive vector functions and predicates. The completeness of the algebraic system of matrix transformations is ensured due to the available results on the derivation of the algebraic system completeness for vector transformations. A name model of matrix data has been created and optimized for the development of hardware implementation. The hardware implementation provides support for signature operations of primitive software algebra and for isomorphic mapping. Hardware support for the functions of sum, multiplication and transposition of matrices, as well as the predicate of equality of two matrices is implemented. Support for signature operations of primitive software algebra is provided by the design of the control part of the matrix computer based on the RISC architecture. The hardware support of isomorphism is based on counters, they allow to intuitively implement cycling in the functions of isomorphic mappings. Fast execution of vector operations is provided by the principle of computer calculations SIMD.


Filomat ◽  
2010 ◽  
Vol 24 (4) ◽  
pp. 35-52 ◽  
Author(s):  
Metin Başarir

In this paper, we define the new generalized Riesz B-difference sequence spaces rq? (p, B), rqc (p, B), rq0 (p, B) and rq (p, B) which consist of the sequences whose Rq B-transforms are in the linear spaces l?(p), c (p), c0(p) and l(p), respectively, introduced by I.J. Maddox[8],[9]. We give some topological properties and compute the ?-, ?- and ?-duals of these spaces. Also we determine the necessary and sufficient conditions on the matrix transformations from these spaces into l? and c.


1997 ◽  
Vol 40 (4) ◽  
pp. 498-508
Author(s):  
Chikkanna Selvaraj ◽  
Suguna Selvaraj

AbstractThis paper is a study of summability methods that are based on Dirichlet convolution. If f(n) is a function on positive integers and x is a sequence such that then x is said to be Af-summable to L. The necessary and sufficient condition for the matrix Af to preserve bounded variation of sequences is established. Also, the matrix Af is investigated as ℓ − ℓ and G − G mappings. The strength of the Af-matrix is also discussed.


Sign in / Sign up

Export Citation Format

Share Document