scholarly journals Algebraic Characteristics of the Matrix Conversions Class and Its Hardware Implementation

2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Stanislav V. Kudlai

This paper derives the algebraic characteristic of the matrix transformations class by the method of isomorphic mappings on the algebraic characteristic of the class of vector transformations using the primitive program algebras. The paper also describes the hardware implementation of the matrix operations accelerator based on the obtained results. The urgency of the work is caused by the fact that today there is a rapid integration of computer technology in all spheres of society and, as a consequence, the amount of data that needs to be processed per unit time is constantly increasing. Many problems involving large amounts of complex computation are solved by methods based on matrix operations. Therefore, the study of matrix calculations and their acceleration is a very important task. In this paper, as a contribution in this direction, we propose a study of the matrix transformations class using signature operations of primitive program algebra such as multi place superposition, branching, cycling, which are refinements of the most common control structures in most high-level programming languages, and also isomorphic mapping. Signature operations of primitive program algebra in combination with basic partial-recursive matrix functions and predicates allow to realize the set of all partial-recursive matrix functions and predicates. Obtained the result on the basis of matrix primitive program algebra. Isomorphism provides the reproduction of partially recursive functions and predicates for matrix transformations as a map of partially recursive vector functions and predicates. The completeness of the algebraic system of matrix transformations is ensured due to the available results on the derivation of the algebraic system completeness for vector transformations. A name model of matrix data has been created and optimized for the development of hardware implementation. The hardware implementation provides support for signature operations of primitive software algebra and for isomorphic mapping. Hardware support for the functions of sum, multiplication and transposition of matrices, as well as the predicate of equality of two matrices is implemented. Support for signature operations of primitive software algebra is provided by the design of the control part of the matrix computer based on the RISC architecture. The hardware support of isomorphism is based on counters, they allow to intuitively implement cycling in the functions of isomorphic mappings. Fast execution of vector operations is provided by the principle of computer calculations SIMD.

Author(s):  
Duanling Li ◽  
Zhonghai Zhang ◽  
Jian S. Dai ◽  
J. Michael McCarthy

Metamorphic mechanisms are a class of mechanisms that change their mobility during motions. The deployable and retractable characteristics of these unique mechanisms generate much interest in further investigating their behaviors and potential applications. This paper investigates the resultant configuration variation based on adjacency matrix operation and an improved approach to mechanism synthesis is proposed by adopting elementary matrix operations on the configuration states so as to avoid some omissions caused by existing methods. The synthesis procedure begins with a final configuration of the mechanism, then enumerates possible combinations of different links and associates added links with the binary inverse operations in the matrix transformations of the configuration states, and finally obtains a synthesis result. An algorithm is presented and the topological symmetry of links is used to reduce the number of mechanisms in the synthesis. Some mechanisms of this kind are illustrated as examples.


2019 ◽  
Vol 7 (1) ◽  
pp. 218-225
Author(s):  
Milica Anđelić ◽  
Tamara Koledin ◽  
Zoran Stanić

Abstract We consider a particular class of signed threshold graphs and their eigenvalues. If Ġ is such a threshold graph and Q(Ġ ) is a quotient matrix that arises from the equitable partition of Ġ , then we use a sequence of elementary matrix operations to prove that the matrix Q(Ġ ) – xI (x ∈ ℝ) is row equivalent to a tridiagonal matrix whose determinant is, under certain conditions, of the constant sign. In this way we determine certain intervals in which Ġ has no eigenvalues.


Mathematics ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 268 ◽  
Author(s):  
Kuddusi Kayaduman ◽  
Fevzi Yaşar

In 1978, the domain of the Nörlund matrix on the classical sequence spaces lp and l∞ was introduced by Wang, where 1 ≤ p < ∞. Tuğ and Başar studied the matrix domain of Nörlund mean on the sequence spaces f0 and f in 2016. Additionally, Tuğ defined and investigated a new sequence space as the domain of the Nörlund matrix on the space of bounded variation sequences in 2017. In this article, we defined new space and and examined the domain of the Nörlund mean on the bs and cs, which are bounded and convergent series, respectively. We also examined their inclusion relations. We defined the norms over them and investigated whether these new spaces provide conditions of Banach space. Finally, we determined their α­, β­, γ­duals, and characterized their matrix transformations on this space and into this space.


2020 ◽  
Vol 53 (4) ◽  
pp. 1101-1107
Author(s):  
Leslie Glasser

Values of molecular bond lengths, bond angles and (less frequently) bond torsion angles are readily available from databases, from crystallographic software, and/or from interactive molecular and crystal visualization programs such as Jmol. However, the methods used to calculate these values are less well known. In this paper, the computational methods are described in detail, and live Excel implementations, which permit readers to readily perform the calculations for their own molecular systems, are provided. The methods described apply to both fractional coordinates in crystal space and Cartesian coordinates in Euclidean space (space in which the geometric postulates of Euclid are valid) and are vector/matrix based. In their simplest computational form, they are applied as algebraic expansions which are summed. They are also available in matrix formulations, which are readily manipulated and calculated using the matrix functions of Excel. In particular, their general formulation as metric matrices is introduced. The methods in use are illustrated by a detailed example of the calculations. This contribution provides a significant practical application which can also act as motivation for the study of matrix mathematics with respect to its many uses in chemistry.


2014 ◽  
Vol 1008-1009 ◽  
pp. 1176-1179
Author(s):  
Hai Dong ◽  
Heng Bao Xin

In this paper, an approach of fuzzy Petri nets (FPN) is proposed to simulate the fault spreading and diagnosis of hydraulic pump. First, the fuzzy production rules and the definition of FPN were briefly introduced. Then, its knowledge reasoning process and the matrix operations based on an algorithm were conducted, which makes full use of its parallel reasoning ability and makes it simpler and easier to implement. Finally, a case of hydraulic pump fault diagnosis with FPN was presented in detail, for illustrating the interest of the proposed modeling and analysis algorithm.


2021 ◽  
Vol 71 (6) ◽  
pp. 1375-1400
Author(s):  
Feyzi Başar ◽  
Hadi Roopaei

Abstract Let F denote the factorable matrix and X ∈ {ℓp , c 0, c, ℓ ∞}. In this study, we introduce the domains X(F) of the factorable matrix in the spaces X. Also, we give the bases and determine the alpha-, beta- and gamma-duals of the spaces X(F). We obtain the necessary and sufficient conditions on an infinite matrix belonging to the classes (ℓ p (F), ℓ ∞), (ℓ p (F), f) and (X, Y(F)) of matrix transformations, where Y denotes any given sequence space. Furthermore, we give the necessary and sufficient conditions for factorizing an operator based on the matrix F and derive two factorizations for the Cesàro and Hilbert matrices based on the Gamma matrix. Additionally, we investigate the norm of operators on the domain of the matrix F. Finally, we find the norm of Hilbert operators on some sequence spaces and deal with the lower bound of operators on the domain of the factorable matrix.


2018 ◽  
Vol 14 (6) ◽  
pp. 1 ◽  
Author(s):  
Riki Mukhaiyar

Cancellable fingerprint uses transformed or intentionally distorted biometric data instead of the original biometric data for identifying person. When a set of biometric data is found to be compromised, they can be discarded, and a new set of biometric data can be regenerated. This initial principal is identical with a non-invertible concept in matrices operations. In matrix domain, a matrix cannot be transformed into its original form if it meets several requirements such as non-square form matrix, consist of one zero row/column, and no row as multiple of another row. These conditions can be acquired by implementing three matrix operations using Kronecker Product (KP) operation, Elementary Row Operation (ERO), and Inverse Matrix (INV) operation. KP is useful to produce a non-square form matrix, to enlarge the size of matrix, to distinguish and disguise the element of matrix by multiplying each of elements of the matrix with a particular matrix. ERO can be defined as multiplication and addition force to matrix rows. INV is utilized to transform one matrix to another one with a different element or form as a reciprocal matrix of the original. These three matrix operations should be implemented together in generating the cancellable feature to robust image. So, if once three conditions are met by imposter, it is impossible to find the original image of the fingerprint. The initial aim of these operations is to camouflage the original look of the fingerprint feature into an abstract-look to deceive an un-authorized personal using the fingerprint irresponsibly. In this research, several fingerprint processing steps such as fingerprint pre-processing, core-point identification, region of interest, minutiae extration, etc; are determined to improve the quality of the cancellable feature. Three different databases i.e. FVC2002, FVC2004, and BRC are utilized in this work.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1301 ◽  
Author(s):  
Vladimir S. Kulabukhov

The problem of determining inverses for maps in commutative diagrams arising in various problems of a new paradigm in algebraic system theory based on a single principle—the general principle of isomorphism is considered. Based on the previously formulated and proven theorem of realization, the rules for determining the inverses for typical cases of specifying commutative diagrams are derived. Simple examples of calculating the matrix maps inverses, which illustrate both the derived rules and the principle of relativity in algebra based on the theorem of realization, are given. The examples also illustrate the emergence of new properties (emergence) in maps in commutative diagrams modeling (realizing) the corresponding systems.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Murat Kirişci

The -space of all sequences is given as such that converges and is a null sequence which is called the Hahn sequence space and is denoted by . Hahn (1922) defined the space and gave some general properties. G. Goes and S. Goes (1970) studied the functional analytic properties of this space. The study of Hahn sequence space was initiated by Chandrasekhara Rao (1990) with certain specific purpose in the Banach space theory. In this paper, the matrix domain of the Hahn sequence space determined by the Cesáro mean first order, denoted by , is obtained, and some inclusion relations and some topological properties of this space are investigated. Also dual spaces of this space are computed and, matrix transformations are characterized.


Author(s):  
C. G. Lascarides ◽  
I. J. Maddox

Let A = (ank) be an infinite matrix of complex numbers ank (n, k = 1, 2,…) and X, Y two subsets of the space s of complex sequences. We say that the matrix A defines a (matrix) transformation from X into Y, and we denote it by writing A: X → Y, if for every sequence x = (xk)∈X the sequence Ax = (An(x)) is in Y, where An(x) = Σankxk and the sum without limits is always taken from k = 1 to k = ∞. The sequence Ax is called the transformation of x by the matrix A. By (X, Y) we denote the class of matrices A such that A: X → Y.


Sign in / Sign up

Export Citation Format

Share Document